Suppr超能文献

一种用于提高听力受损听众在相同噪声类型的新片段中的言语可懂度的算法。

An algorithm to increase speech intelligibility for hearing-impaired listeners in novel segments of the same noise type.

作者信息

Healy Eric W, Yoho Sarah E, Chen Jitong, Wang Yuxuan, Wang DeLiang

机构信息

Department of Speech and Hearing Science, Center for Cognitive and Brain Sciences, The Ohio State University, Columbus, Ohio 43210, USA.

Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

J Acoust Soc Am. 2015 Sep;138(3):1660-9. doi: 10.1121/1.4929493.

Abstract

Machine learning algorithms to segregate speech from background noise hold considerable promise for alleviating limitations associated with hearing impairment. One of the most important considerations for implementing these algorithms into devices such as hearing aids and cochlear implants involves their ability to generalize to conditions not employed during the training stage. A major challenge involves the generalization to novel noise segments. In the current study, sentences were segregated from multi-talker babble and from cafeteria noise using an algorithm that employs deep neural networks to estimate the ideal ratio mask. Importantly, the algorithm was trained on segments of noise and tested using entirely novel segments of the same nonstationary noise type. Substantial sentence-intelligibility benefit was observed for hearing-impaired listeners in both noise types, despite the use of unseen noise segments during the test stage. Interestingly, normal-hearing listeners displayed benefit in babble but not in cafeteria noise. This result highlights the importance of evaluating these algorithms not only in human subjects, but in members of the actual target population.

摘要

用于将语音与背景噪声分离的机器学习算法在减轻与听力障碍相关的局限性方面具有很大的前景。将这些算法应用于助听器和人工耳蜗等设备时,最重要的考虑因素之一是它们能否推广到训练阶段未使用的条件。一个主要挑战是如何推广到新的噪声片段。在当前的研究中,使用一种采用深度神经网络来估计理想比率掩码的算法,从多说话者的嘈杂声和自助餐厅噪声中分离出句子。重要的是,该算法是在噪声片段上进行训练的,并使用完全相同的非平稳噪声类型的全新片段进行测试。尽管在测试阶段使用了未见过的噪声片段,但在两种噪声类型中,听力受损的听众都观察到了显著的句子可懂度提升。有趣的是,听力正常的听众在嘈杂声中表现出了优势,但在自助餐厅噪声中却没有。这一结果凸显了不仅要在人类受试者中,而且要在实际目标人群中评估这些算法的重要性。

相似文献

引用本文的文献

本文引用的文献

2
On Training Targets for Supervised Speech Separation.论监督语音分离的训练目标
IEEE/ACM Trans Audio Speech Lang Process. 2014 Dec;22(12):1849-1858. doi: 10.1109/TASLP.2014.2352935.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验