Suppr超能文献

H-Au(111)精确的全维势能面:非绝热电子激发在能量转移和吸附中的重要性。

An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

作者信息

Janke Svenja M, Auerbach Daniel J, Wodtke Alec M, Kandratsenka Alexander

机构信息

Institute for Physical Chemistry, Göttingen University, Tammannstr. 6, 37077 Göttingen, Germany.

出版信息

J Chem Phys. 2015 Sep 28;143(12):124708. doi: 10.1063/1.4931669.

Abstract

We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

摘要

我们基于将有效介质理论(EMT)的能量解析形式拟合到用密度泛函理论计算的从头算能量值,构建了一个用于氢原子与面心立方金(111)相互作用的势能面(PES)。该拟合使用了氢 - 金系统的构型输入,其中金原子处于其晶格位置,以及金原子偏离其晶格位置的构型。它不仅能完整地再现用作输入的构型的能量,还能再现从有限温度下的从头算分子动力学(AIMD)轨迹导出的大量其他构型的能量。在这个PES上进行的绝热分子动力学模拟再现了AIMD的能量损失行为。EMT还提供了嵌入电子密度的表达式,这使我们能够开发一种自洽方法来模拟非绝热电子 - 空穴对激发及其对入射氢原子运动的影响。对于能量为2.7 eV的氢原子与金碰撞,电子 - 空穴对激发是迄今为止最重要的能量损失途径,其平均能量损失约为绝热情况的3倍。这种增加的能量损失使氢原子留在金板上或进入金板的概率提高了2倍。对于未被散射的氢原子,最可能的结果也极大地取决于能量转移机制;对于非绝热情况,超过50%未被散射的氢原子被吸附在表面,而对于绝热情况,超过50%的氢原子完全穿过4层模拟板。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验