Suppr超能文献

先天性糖基化障碍患者中一种新型 N-四糖,包括天冬酰胺连接糖基化蛋白 1、磷酸甘露糖变位酶 2 和磷酸甘露糖异构酶缺乏症。

A Novel N-Tetrasaccharide in Patients with Congenital Disorders of Glycosylation, Including Asparagine-Linked Glycosylation Protein 1, Phosphomannomutase 2, and Mannose Phosphate Isomerase Deficiencies.

作者信息

Zhang Wenyue, James Philip M, Ng Bobby G, Li Xueli, Xia Baoyun, Rong Jiang, Asif Ghazia, Raymond Kimiyo, Jones Melanie A, Hegde Madhuri, Ju Tongzhong, Cummings Richard D, Clarkson Katie, Wood Tim, Boerkoel Cornelius F, Freeze Hudson H, He Miao

机构信息

Department of Human Genetics and.

Division of Genetics, Department of Medicine, Children's Hospital Boston, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA;

出版信息

Clin Chem. 2016 Jan;62(1):208-17. doi: 10.1373/clinchem.2015.243279. Epub 2015 Oct 1.

Abstract

BACKGROUND

Primary deficiencies in mannosylation of N-glycans are seen in a majority of patients with congenital disorders of glycosylation (CDG). We report the discovery of a series of novel N-glycans in sera, plasma, and cultured skin fibroblasts from patients with CDG having deficient mannosylation.

METHOD

We used LC-MS/MS and MALDI-TOF-MS analysis to identify and quantify a novel N-linked tetrasaccharide linked to the protein core, an N-tetrasaccharide (Neu5Acα2,6Galβ1,4-GlcNAcβ1,4GlcNAc) in plasma, serum glycoproteins, and a fibroblast lysate from patients with CDG caused by ALG1 [ALG1 (asparagine-linked glycosylation protein 1), chitobiosyldiphosphodolichol β-mannosyltransferase], PMM2 (phosphomannomutase 2), and MPI (mannose phosphate isomerase).

RESULTS

Glycoproteins in sera, plasma, or cell lysate from ALG1-CDG, PMM2-CDG, and MPI-CDG patients had substantially more N-tetrasaccharide than unaffected controls. We observed a >80% decline in relative concentrations of the N-tetrasaccharide in MPI-CDG plasma after mannose therapy in 1 patient and in ALG1-CDG fibroblasts in vitro supplemented with mannose.

CONCLUSIONS

This novel N-tetrasaccharide could serve as a diagnostic marker of ALG1-, PMM2-, or MPI-CDG for screening of these 3 common CDG subtypes that comprise >70% of CDG type I patients. Its quantification by LC-MS/MS may be useful for monitoring therapeutic efficacy of mannose. The discovery of these small N-glycans also indicates the presence of an alternative pathway in N-glycosylation not recognized previously, but its biological significance remains to be studied.

摘要

背景

大多数先天性糖基化障碍(CDG)患者存在N - 聚糖甘露糖基化的原发性缺陷。我们报告了在糖基化缺陷的CDG患者的血清、血浆和培养的皮肤成纤维细胞中发现了一系列新型N - 聚糖。

方法

我们使用液相色谱 - 串联质谱(LC - MS/MS)和基质辅助激光解吸电离飞行时间质谱(MALDI - TOF - MS)分析来鉴定和定量与蛋白质核心相连的一种新型N - 连接四糖,即血浆、血清糖蛋白以及由ALG1[天冬酰胺连接的糖基化蛋白1,壳二糖二磷酸 dolicholβ - 甘露糖基转移酶]、PMM2(磷酸甘露糖变位酶2)和MPI(甘露糖磷酸异构酶)缺陷导致的CDG患者的成纤维细胞裂解物中的N - 四糖(Neu5Acα2,6Galβ1,4 - GlcNAcβ1,4GlcNAc)。

结果

来自ALG1 - CDG、PMM2 - CDG和MPI - CDG患者的血清、血浆或细胞裂解物中的糖蛋白所含N - 四糖比未受影响的对照者显著更多。我们观察到1例患者在接受甘露糖治疗后,MPI - CDG血浆中N - 四糖的相对浓度下降了80%以上,体外补充甘露糖的ALG1 - CDG成纤维细胞中也是如此。

结论

这种新型N - 四糖可作为ALG1 - 、PMM2 - 或MPI - CDG的诊断标志物,用于筛查这3种常见的CDG亚型,它们占I型CDG患者的70%以上。通过LC - MS/MS对其进行定量分析可能有助于监测甘露糖的治疗效果。这些小N - 聚糖的发现还表明存在一条以前未被认识的N - 糖基化替代途径,但其生物学意义仍有待研究。

相似文献

2
Protein-Specific Glycoprofiling for Patient Diagnostics.
Clin Chem. 2016 Jan;62(1):9-11. doi: 10.1373/clinchem.2015.248518. Epub 2015 Nov 19.
3
Serum transferrin carrying the xeno-tetrasaccharide NeuAc-Gal-GlcNAc2 is a biomarker of ALG1-CDG.
J Inherit Metab Dis. 2016 Jan;39(1):107-14. doi: 10.1007/s10545-015-9884-y. Epub 2015 Sep 3.
4
Phosphomannose isomerase inhibitors improve N-glycosylation in selected phosphomannomutase-deficient fibroblasts.
J Biol Chem. 2011 Nov 11;286(45):39431-8. doi: 10.1074/jbc.M111.285502. Epub 2011 Sep 26.
6
Liposome-encapsulated mannose-1-phosphate therapy improves global N-glycosylation in different congenital disorders of glycosylation.
Mol Genet Metab. 2024 Jun;142(2):108487. doi: 10.1016/j.ymgme.2024.108487. Epub 2024 May 7.
8
In vitro treatment with liposome-encapsulated Mannose-1-phosphate restores N-glycosylation in PMM2-CDG patient-derived fibroblasts.
Mol Genet Metab. 2024 Sep-Oct;143(1-2):108531. doi: 10.1016/j.ymgme.2024.108531. Epub 2024 Jul 1.
9
ALG1-CDG: a new case with early fatal outcome.
Gene. 2014 Jan 25;534(2):345-51. doi: 10.1016/j.gene.2013.10.013. Epub 2013 Oct 21.

引用本文的文献

2
Diagnostic and Therapeutic Approaches in Congenital Disorders of Glycosylation.
Handb Exp Pharmacol. 2025;288:211-241. doi: 10.1007/164_2025_745.
4
Normal transferrin glycosylation does not rule out severe ALG1 deficiency.
JIMD Rep. 2024 Apr 16;65(3):135-143. doi: 10.1002/jmd2.12415. eCollection 2024 May.
5
Liposome-encapsulated mannose-1-phosphate therapy improves global N-glycosylation in different congenital disorders of glycosylation.
Mol Genet Metab. 2024 Jun;142(2):108487. doi: 10.1016/j.ymgme.2024.108487. Epub 2024 May 7.
6
Deficient glycan extension and endoplasmic reticulum stresses in ALG3-CDG.
J Inherit Metab Dis. 2024 Jul;47(4):766-777. doi: 10.1002/jimd.12739. Epub 2024 Apr 10.
7
Revisiting the immunopathology of congenital disorders of glycosylation: an updated review.
Front Immunol. 2024 Mar 14;15:1350101. doi: 10.3389/fimmu.2024.1350101. eCollection 2024.
8
Dysregulated proteome and N-glycoproteome in ALG1-deficient fibroblasts.
Proteomics. 2024 Aug;24(15):e2400012. doi: 10.1002/pmic.202400012. Epub 2024 Mar 12.

本文引用的文献

1
Solving glycosylation disorders: fundamental approaches reveal complicated pathways.
Am J Hum Genet. 2014 Feb 6;94(2):161-75. doi: 10.1016/j.ajhg.2013.10.024.
2
Serum N-glycan and O-glycan analysis by mass spectrometry for diagnosis of congenital disorders of glycosylation.
Anal Biochem. 2013 Nov 15;442(2):178-85. doi: 10.1016/j.ab.2013.07.037. Epub 2013 Aug 6.
3
Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology.
EMBO J. 2013 May 15;32(10):1478-88. doi: 10.1038/emboj.2013.79. Epub 2013 Apr 12.
4
A sensitive green fluorescent protein biomarker of N-glycosylation site occupancy.
FASEB J. 2012 Oct;26(10):4210-7. doi: 10.1096/fj.12-211656. Epub 2012 Jun 12.
5
Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing.
Hum Mol Genet. 2012 Oct 1;21(19):4151-61. doi: 10.1093/hmg/dds123. Epub 2012 Apr 5.
7
Glycan reductive isotope labeling for quantitative glycomics.
Anal Biochem. 2009 Apr 15;387(2):162-70. doi: 10.1016/j.ab.2009.01.028. Epub 2009 Feb 10.
8
Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis.
Glycobiology. 2005 Aug;15(8):747-75. doi: 10.1093/glycob/cwi061. Epub 2005 Apr 15.
9
Physiological changes in circulating mannose levels in normal, glucose-intolerant, and diabetic subjects.
Metabolism. 2003 Aug;52(8):1019-27. doi: 10.1016/s0026-0495(03)00153-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验