Faruki Hawazin, Mayhew Gregory M, Fan Cheng, Wilkerson Matthew D, Parker Scott, Kam-Morgan Lauren, Eisenberg Marcia, Horten Bruce, Hayes D Neil, Perou Charles M, Lai-Goldman Myla
From the Clinical Development Department, GeneCentric Diagnostics, Durham, North Carolina (Drs Faruki, Mayhew, and Lai-Goldman); the Lineberger Comprehensive Cancer Center (Mr Fan and Drs Hayes and Perou) and the Department of Genetics (Drs Wilkerson and Perou), University of North Carolina, Chapel Hill; and the Center for Molecular Biology and Pathology, Laboratory Corporation of America Holdings, Research Triangle Park, North Carolina (Mr Parker and Drs Kam-Morgan, Eisenberg, and Horten).
Arch Pathol Lab Med. 2016 Jun;140(6):536-42. doi: 10.5858/arpa.2015-0113-OA. Epub 2015 Oct 2.
Context .- A histologic classification of lung cancer subtypes is essential in guiding therapeutic management. Objective .- To complement morphology-based classification of lung tumors, a previously developed lung subtyping panel (LSP) of 57 genes was tested using multiple public fresh-frozen gene-expression data sets and a prospectively collected set of formalin-fixed, paraffin-embedded lung tumor samples. Design .- The LSP gene-expression signature was evaluated in multiple lung cancer gene-expression data sets totaling 2177 patients collected from 4 platforms: Illumina RNAseq (San Diego, California), Agilent (Santa Clara, California) and Affymetrix (Santa Clara) microarrays, and quantitative reverse transcription-polymerase chain reaction. Gene centroids were calculated for each of 3 genomic-defined subtypes: adenocarcinoma, squamous cell carcinoma, and neuroendocrine, the latter of which encompassed both small cell carcinoma and carcinoid. Classification by LSP into 3 subtypes was evaluated in both fresh-frozen and formalin-fixed, paraffin-embedded tumor samples, and agreement with the original morphology-based diagnosis was determined. Results .- The LSP-based classifications demonstrated overall agreement with the original clinical diagnosis ranging from 78% (251 of 322) to 91% (492 of 538 and 869 of 951) in the fresh-frozen public data sets and 84% (65 of 77) in the formalin-fixed, paraffin-embedded data set. The LSP performance was independent of tissue-preservation method and gene-expression platform. Secondary, blinded pathology review of formalin-fixed, paraffin-embedded samples demonstrated concordance of 82% (63 of 77) with the original morphology diagnosis. Conclusions .- The LSP gene-expression signature is a reproducible and objective method for classifying lung tumors and demonstrates good concordance with morphology-based classification across multiple data sets. The LSP panel can supplement morphologic assessment of lung cancers, particularly when classification by standard methods is challenging.
背景。- 肺癌亚型的组织学分类对于指导治疗管理至关重要。
目的。- 为补充基于形态学的肺肿瘤分类,使用多个公开的新鲜冷冻基因表达数据集以及一组前瞻性收集的福尔马林固定、石蜡包埋的肺肿瘤样本,对先前开发的包含57个基因的肺亚型分类面板(LSP)进行测试。
设计。- 在从4个平台收集的总计2177例患者的多个肺癌基因表达数据集中评估LSP基因表达特征:Illumina RNAseq(加利福尼亚州圣地亚哥)、安捷伦(加利福尼亚州圣克拉拉)和Affymetrix(圣克拉拉)微阵列以及定量逆转录-聚合酶链反应。计算了3种基因组定义的亚型(腺癌、鳞状细胞癌和神经内分泌癌,后者包括小细胞癌和类癌)各自的基因中心值。在新鲜冷冻和福尔马林固定、石蜡包埋的肿瘤样本中评估LSP分类为3种亚型的情况,并确定与原始基于形态学的诊断的一致性。
结果。- 在新鲜冷冻的公开数据集中,基于LSP的分类与原始临床诊断的总体一致性范围为78%(322例中的251例)至91%(538例中的492例和951例中的869例),在福尔马林固定、石蜡包埋的数据集中为84%(77例中的65例)。LSP的性能与组织保存方法和基因表达平台无关。其次,对福尔马林固定、石蜡包埋样本进行的盲法二次病理检查显示与原始形态学诊断的一致性为82%(77例中的63例)。
结论。- LSP基因表达特征是一种用于分类肺肿瘤的可重复且客观的方法,并且在多个数据集中与基于形态学的分类显示出良好的一致性。LSP面板可以补充肺癌的形态学评估,特别是在通过标准方法进行分类具有挑战性时。