Higashino Toshiki, Jeannin Olivier, Kawamoto Tadashi, Lorcy Dominique, Mori Takehiko, Fourmigué Marc
Institut des Sciences Chimiques de Rennes (ISCR), Université Rennes 1, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes, France.
Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama 2-12-1, Meguro-ku, 152-8552, Japan.
Inorg Chem. 2015 Oct 19;54(20):9908-13. doi: 10.1021/acs.inorgchem.5b01678. Epub 2015 Oct 2.
Alkyl-substituted thiophene-2,3-dithiolate ligands are prepared through a Thio-Claisen rearrangement of 4,5-bis(propargylthio)-1,3-dithiole-2-thione derivatives. The two novel dithiolate ligands, namely, 4,5-dimethyl-thiophene-2,3-dithiolate (α-Me2tpdt) and 4-ethyl-5-methyl-thiophene-2,3-dithiolate (α-EtMetpdt), are engaged in anionic Au(III) square planar complexes formulated as Au(α-Me2tpdt)2 and Au(α-EtMetpdt)2, isolated as Ph4P(+) salts. Monoelectronic oxidation gives the neutral radical complexes Au(α-Me2tpdt)2 and Au(α-EtMetpdt)2. The latter crystallizes into uniform stacks with limited interstack interactions, giving rise to a calculated half-filled band structure. It exhibits a semiconducting behavior with room temperature conductivity of 3 × 10(-3) S cm(-1), indicating that this single-component conductor can be described as a Mott insulator. The different structures observed in Au(α-EtMetpdt)2 and the known Au(Et-thiazdt)2 complex (Et-thiazdt: N-ethyl-thiazoline-2-thione-4,5-dithiolate), despite their very similar shapes, are tentatively attributed to differences in the electronic structures of the ligand skeleton.
烷基取代的噻吩-2,3-二硫醇盐配体是通过4,5-双(炔丙硫基)-1,3-二硫杂环戊烯-2-硫酮衍生物的硫代克莱森重排反应制备的。两种新型二硫醇盐配体,即4,5-二甲基-噻吩-2,3-二硫醇盐(α-Me2tpdt)和4-乙基-5-甲基-噻吩-2,3-二硫醇盐(α-EtMetpdt),参与形成阴离子型金(III)平面正方形配合物,其化学式分别为Au(α-Me2tpdt)2和Au(α-EtMetpdt)2,以四苯基鏻(Ph4P(+))盐的形式分离出来。单电子氧化得到中性自由基配合物Au(α-Me2tpdt)2和Au(α-EtMetpdt)2。后者结晶形成具有有限层间相互作用的均匀堆叠结构,从而产生计算得出的半填充能带结构。它表现出半导体行为,室温电导率为3×10(-3) S cm(-1),这表明这种单组分导体可被描述为莫特绝缘体。尽管Au(α-EtMetpdt)2和已知的Au(Et-thiazdt)2配合物(Et-thiazdt:N-乙基-噻唑啉-2-硫酮-4,5-二硫醇盐)形状非常相似,但观察到的不同结构初步归因于配体骨架电子结构的差异。