Kharraz Haia, Alemany Pere, Canadell Enric, Le Gal Yann, Roisnel Thierry, Cui Hengbo, Kim Kee Hoon, Fourmigué Marc, Lorcy Dominique
UnivRennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) 35042 Rennes France
Departament de Ciència de Materials i Química Física and Institut de QuímicaTeòrica i Computacional (IQTCUB), Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain.
Chem Sci. 2024 Jun 21;15(29):11604-11616. doi: 10.1039/d4sc03238a. eCollection 2024 Jul 24.
Neutral radical bis(dithiolene) gold complexes [Au(dt)]˙ are known to exhibit a strong absorption in the 1400-2000 nm NIR absorption range. Here, we demonstrate that the NIR signature of mixed-ligand bis(dithiolene) gold complexes [Au(dt)(dt)]˙ associating two different dithiolene, dt and dt, is found at higher energy, out of the range of the homoleptic analogs [Au(dt)]˙ and [Au(dt)]˙, in the looked-after NIR-II 1000-1400 nm absorption range. An efficient synthetic approach towards precursor mixed-ligand monoanionic gold bis(dithiolene) complexes [Au(dt)(dt)] is reported. Using this strategy, no symmetrical complexes are formed and, upon electrocrystallization, no scrambling was observed in solution, allowing for the isolation of radical gold bis(dithiolene) complex such as [Au(bdt)(Et-thiazdt)]˙ (bdt: benzene-1,2-dithiolate; Et-thiazdt: -ethyl-thiazoline-2-thione-3,4-dithiolate), which behaves as a single-component conductor. It is shown from theoretical calculations that the spin polarization induced by electron repulsions leads to a strong localization of the spin-orbitals, and provides a sound basis to understand, (i) the different ligand-based oxidation potentials, (ii) the NIR optical absorption at notably higher energies and (iii) the larger potential difference of the two redox processes than in the parent symmetric complexes. The solid-state properties of the radical complex [Au(bdt)(Et-thiazdt)]˙ are the consequence of a strongly 1D electronic structure with weakly dimerized chains and electronic localization favoring a semiconducting behavior, stable under pressures up to 18.2 GPa. Altogether, the versatility of the preparation method of [Au(dt)(dt)] salts opens the route for a wide library of different mixed-ligand radical complexes [Au(dt)(dt)]˙ with simultaneously an adaptable absorption in the NIR-II range and the rich structural chemistry of single-component conductors.
已知中性自由基双(二硫纶)金配合物[Au(dt)]˙在1400 - 2000 nm近红外吸收范围内表现出强烈吸收。在此,我们证明,混合配体双(二硫纶)金配合物[Au(dt)(dt)]˙(结合两种不同的二硫纶dt和dt)的近红外特征出现在更高能量处,超出了同配体类似物[Au(dt)]˙和[Au(dt)]˙的范围,处于备受关注的近红外二区1000 - 1400 nm吸收范围内。报道了一种制备前体混合配体单阴离子金双(二硫纶)配合物[Au(dt)(dt)]的有效合成方法。使用该策略,未形成对称配合物,并且在电结晶过程中,溶液中未观察到配体交换,从而能够分离出自由基金双(二硫纶)配合物,如[Au(bdt)(Et-thiazdt)]˙(bdt:苯 - 1,2 - 二硫醇盐;Et-thiazdt: - 乙基 - 噻唑啉 - 2 - 硫酮 - 3,4 - 二硫醇盐),其表现为单组分导体。理论计算表明,电子排斥诱导的自旋极化导致自旋轨道的强烈局域化,并为理解以下几点提供了合理依据:(i) 基于配体的不同氧化电位;(ii) 在明显更高能量处的近红外光吸收;(iii) 与母体对称配合物相比,两个氧化还原过程的更大电位差。自由基配合物[Au(bdt)(Et-thiazdt)]˙的固态性质是具有弱二聚链的强一维电子结构和有利于半导体行为的电子局域化的结果,在高达18.2 GPa的压力下稳定。总之,[Au(dt)(dt)]盐制备方法的多功能性为大量不同的混合配体自由基配合物[Au(dt)(dt)]˙开辟了道路,这些配合物在近红外二区范围内具有可调节的吸收,同时具有单组分导体丰富的结构化学性质。