Suppr超能文献

通过深度转录组测序揭示了密切相关细菌菌株之间的相互作用。

Interactions between closely related bacterial strains are revealed by deep transcriptome sequencing.

作者信息

González-Torres Pedro, Pryszcz Leszek P, Santos Fernando, Martínez-García Manuel, Gabaldón Toni, Antón Josefa

机构信息

Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain.

Bioinformatics and Genomics Program, Centre for Genomic Regulation, Barcelona, Spain Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Appl Environ Microbiol. 2015 Dec;81(24):8445-56. doi: 10.1128/AEM.02690-15. Epub 2015 Oct 2.

Abstract

Comparative genomics, metagenomics, and single-cell technologies have shown that populations of microbial species encompass assemblages of closely related strains. This raises the question of whether individual bacterial lineages respond to the presence of their close relatives by modifying their gene expression or, instead, whether assemblages simply act as the arithmetic addition of their individual components. Here, we took advantage of transcriptome sequencing to address this question. For this, we analyzed the transcriptomes of two closely related strains of the extremely halophilic bacterium Salinibacter ruber grown axenically and in coculture. These organisms dominate bacterial assemblages in hypersaline environments worldwide. The strains used here cooccurred in the natural environment and are 100% identical in their 16S rRNA genes, and each strain harbors an accessory genome representing 10% of its complete genome. Overall, transcriptomic patterns from pure cultures were very similar for both strains. Expression was detected along practically the whole genome albeit with some genes at low levels. A subset of genes was very highly expressed in both strains, including genes coding for the light-driven proton pump xanthorhodopsin, genes involved in the stress response, and genes coding for transcriptional regulators. Expression differences between pure cultures affected mainly genes involved in environmental sensing. When the strains were grown in coculture, there was a modest but significant change in their individual transcription patterns compared to those in pure culture. Each strain sensed the presence of the other and responded in a specific manner, which points to fine intraspecific transcriptomic modulation.

摘要

比较基因组学、宏基因组学和单细胞技术表明,微生物物种群体包含密切相关菌株的集合。这就提出了一个问题,即单个细菌谱系是否会通过改变其基因表达来响应其近亲的存在,或者相反,这些集合是否仅仅是其各个组成部分的简单算术相加。在这里,我们利用转录组测序来解决这个问题。为此,我们分析了在无菌条件下和共培养条件下生长的极端嗜盐细菌盐红菌(Salinibacter ruber)的两个密切相关菌株的转录组。这些生物在全球高盐环境中的细菌群落中占主导地位。这里使用的菌株在自然环境中共存,其16S rRNA基因完全相同,并且每个菌株都有一个辅助基因组,占其完整基因组的10%。总体而言,两种菌株纯培养物的转录组模式非常相似。几乎所有基因都有表达,尽管有些基因表达水平较低。一小部分基因在两种菌株中都高度表达,包括编码光驱动质子泵视黄质的基因、参与应激反应的基因以及编码转录调节因子的基因。纯培养物之间的表达差异主要影响参与环境感知的基因。当这些菌株在共培养条件下生长时,与纯培养相比,它们各自的转录模式有适度但显著的变化。每个菌株都能感知到另一个菌株的存在并以特定方式做出反应,这表明存在精细的种内转录组调控。

相似文献

1
Interactions between closely related bacterial strains are revealed by deep transcriptome sequencing.
Appl Environ Microbiol. 2015 Dec;81(24):8445-56. doi: 10.1128/AEM.02690-15. Epub 2015 Oct 2.
5
Lunatimonas lonarensis gen. nov., sp. nov., a haloalkaline bacterium of the family Cyclobacteriaceae with nitrate reducing activity.
Syst Appl Microbiol. 2014 Feb;37(1):10-6. doi: 10.1016/j.syapm.2013.10.003. Epub 2013 Dec 5.
6
High metabolomic microdiversity within co-occurring isolates of the extremely halophilic bacterium Salinibacter ruber.
PLoS One. 2013 May 31;8(5):e64701. doi: 10.1371/journal.pone.0064701. Print 2013.
7
The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18147-52. doi: 10.1073/pnas.0509073102. Epub 2005 Dec 5.
8
Salinibacter: an extremely halophilic bacterium with archaeal properties.
FEMS Microbiol Lett. 2013 May;342(1):1-9. doi: 10.1111/1574-6968.12094. Epub 2013 Feb 25.
9
Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin.
PLoS One. 2013 May 6;8(5):e63422. doi: 10.1371/journal.pone.0063422. Print 2013.
10
Metagenomic islands of hyperhalophiles: the case of Salinibacter ruber.
BMC Genomics. 2009 Dec 1;10:570. doi: 10.1186/1471-2164-10-570.

引用本文的文献

2
Differences in gene expression patterns between cultured and natural ecotypes.
Front Microbiol. 2022 Nov 10;13:1044446. doi: 10.3389/fmicb.2022.1044446. eCollection 2022.
3
Evolutionary Pathways and Trajectories in Antibiotic Resistance.
Clin Microbiol Rev. 2021 Dec 15;34(4):e0005019. doi: 10.1128/CMR.00050-19. Epub 2021 Jun 30.
4
Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production.
Curr Microbiol. 2021 Apr;78(4):1069-1085. doi: 10.1007/s00284-021-02375-2. Epub 2021 Feb 20.
6
Diversity within species: interpreting strains in microbiomes.
Nat Rev Microbiol. 2020 Sep;18(9):491-506. doi: 10.1038/s41579-020-0368-1. Epub 2020 Jun 4.
7
Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae.
Antibiotics (Basel). 2020 May 4;9(5):229. doi: 10.3390/antibiotics9050229.
8
CROSSMAPPER: estimating cross-mapping rates and optimizing experimental design in multi-species sequencing studies.
Bioinformatics. 2020 Feb 1;36(3):925-927. doi: 10.1093/bioinformatics/btz626.
9
Coculturing Bacteria Leads to Reduced Phenotypic Heterogeneities.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02814-18. Print 2019 Apr 15.
10
Impact of Homologous Recombination on the Evolution of Prokaryotic Core Genomes.
mBio. 2019 Jan 22;10(1):e02494-18. doi: 10.1128/mBio.02494-18.

本文引用的文献

2
Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea.
ISME J. 2015 Feb;9(2):347-60. doi: 10.1038/ismej.2014.129. Epub 2014 Sep 19.
4
Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus.
Science. 2014 Apr 25;344(6182):416-20. doi: 10.1126/science.1248575.
5
6
Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level.
Front Microbiol. 2014 Feb 11;5:38. doi: 10.3389/fmicb.2014.00038. eCollection 2014.
7
Conjugative and mobilizable genomic islands in bacteria: evolution and diversity.
FEMS Microbiol Rev. 2014 Jul;38(4):720-60. doi: 10.1111/1574-6976.12058. Epub 2014 Jan 27.
8
The private life of environmental bacteria: pollutant biodegradation at the single cell level.
Environ Microbiol. 2014 Mar;16(3):628-42. doi: 10.1111/1462-2920.12360. Epub 2014 Jan 16.
10
High metabolomic microdiversity within co-occurring isolates of the extremely halophilic bacterium Salinibacter ruber.
PLoS One. 2013 May 31;8(5):e64701. doi: 10.1371/journal.pone.0064701. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验