Suppr超能文献

convISA:一种用于脂肪酸和胆固醇同位素异构体光谱分析的简单卷积方法。

convISA: A simple, convoluted method for isotopomer spectral analysis of fatty acids and cholesterol.

作者信息

Tredwell Gregory D, Keun Hector C

机构信息

Division of Cancer, Department of Surgery & Cancer, Imperial College, London, SW7 2AZ, United Kingdom.

Division of Cancer, Department of Surgery & Cancer, Imperial College, London, SW7 2AZ, United Kingdom.

出版信息

Metab Eng. 2015 Nov;32:125-132. doi: 10.1016/j.ymben.2015.09.008. Epub 2015 Oct 9.

Abstract

Isotopomer spectral analysis (ISA) is a simple approach for modelling the cellular synthesis of fatty acids and cholesterol in a stable isotope labelling experiment. In the simplest model, fatty acid biosynthesis is described by two key parameters: the fractional enrichment of acetyl-CoA from the labelled substrate, D, and the fractional de novo synthesis of the fatty acid during the exposure to the labelled substrate, g(t). The model can also be readily extended to include synthesis via elongation of unlabelled shorter fatty acids. This modelling strategy is less complex than metabolic flux analysis and only requires the measurement of the mass isotopologues of a single metabolite. However, software tools to perform these calculations are not freely available. We have developed an algorithm (convISA), implemented in MATLAB(™), which employs the convolution (Cauchy product) of mass isotopologue distributions (MIDs) for ISA of fatty acids and cholesterol. In our method, the MIDs of each molecule are constructed as a single entity rather than deriving equations for individual isotopologues. The flexibility of this method allows the model to be applied to raw data as well as to data that has been corrected for natural isotope abundance. To test the algorithm, convISA was applied to 238 MIDs of methyl palmitate available from the literature, for which ISA parameters had been calculated via other methods. A very high correlation was observed between estimates of the D and g(t) parameters from convISA with both published values, and estimates generated by our own metabolic flux analysis using a simplified stoichiometric model (r=0.981 and 0.944, and 0.996 and 0.942). We also demonstrate the application of the convolution ISA approach to cholesterol biosynthesis; the model was applied to measurements made on MCF7 cells cultured in U-(13)C-glucose. In conclusion, we believe that convISA offers a convenient, flexible and transparent framework for metabolic modelling that will help facilitate the application of ISA to future experiments.

摘要

同位素异构体光谱分析(ISA)是一种在稳定同位素标记实验中对脂肪酸和胆固醇的细胞合成进行建模的简单方法。在最简单的模型中,脂肪酸生物合成由两个关键参数描述:来自标记底物的乙酰辅酶A的分数富集度D,以及在暴露于标记底物期间脂肪酸的从头合成分数g(t)。该模型还可以很容易地扩展到包括通过未标记的较短脂肪酸延长进行的合成。这种建模策略比代谢通量分析更简单,只需要测量单一代谢物的质量同位素异构体。然而,执行这些计算的软件工具并非免费可得。我们已经开发了一种在MATLAB(™)中实现的算法(convISA),它采用质量同位素异构体分布(MID)的卷积(柯西乘积)来进行脂肪酸和胆固醇的ISA。在我们的方法中,每个分子的MID被构建为一个单一实体,而不是为单个同位素异构体推导方程。这种方法的灵活性允许该模型应用于原始数据以及已针对天然同位素丰度进行校正的数据。为了测试该算法,将convISA应用于文献中可用的238个棕榈酸甲酯的MID,其ISA参数已通过其他方法计算得出。convISA对D和g(t)参数的估计值与已发表的值以及我们自己使用简化化学计量模型进行的代谢通量分析生成的估计值之间观察到非常高的相关性(r分别为0.981和0.944,以及0.996和0.942)。我们还展示了卷积ISA方法在胆固醇生物合成中的应用;该模型应用于在U-(13)C-葡萄糖中培养的MCF7细胞的测量。总之,我们认为convISA为代谢建模提供了一个方便、灵活且透明的框架,这将有助于促进ISA在未来实验中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验