Vandenplas J, Colinet F G, Glorieux G, Bertozzi C, Gengler N
Animal Science Unit, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium; National Fund for Scientific Research, 1000 Brussels, Belgium.
Animal Science Unit, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium.
J Dairy Sci. 2015 Dec;98(12):9044-50. doi: 10.3168/jds.2015-9894.
Based on a Bayesian view of linear mixed models, several studies showed the possibilities to integrate estimated breeding values (EBV) and associated reliabilities (REL) provided by genetic evaluations performed outside a given evaluation system into this genetic evaluation. Hereafter, the term "internal" refers to this given genetic evaluation system, and the term "external" refers to all other genetic evaluations performed outside the internal evaluation system. Bayesian approaches integrate external information (i.e., external EBV and associated REL) by altering both the mean and (co)variance of the prior distributions of the additive genetic effects based on the knowledge of this external information. Extensions of the Bayesian approaches to multivariate settings are interesting because external information expressed on other scales, measurement units, or trait definitions, or associated with different heritabilities and genetic parameters than the internal traits, could be integrated into a multivariate genetic evaluation without the need to convert external information to the internal traits. Therefore, the aim of this study was to test the integration of external EBV and associated REL, expressed on a 305-d basis and genetically correlated with a trait of interest, into a multivariate genetic evaluation using a random regression test-day model for the trait of interest. The approach we used was a multivariate Bayesian approach. Results showed that the integration of external information led to a genetic evaluation for the trait of interest for, at least, animals associated with external information, as accurate as a bivariate evaluation including all available phenotypic information. In conclusion, the multivariate Bayesian approaches have the potential to integrate external information correlated with the internal phenotypic traits, and potentially to the different random regressions, into a multivariate genetic evaluation. This allows the use of different scales, heritabilities, variance components, measurement units, or trait definitions for external and internal traits. However, one possible issue for implementing multivariate Bayesian approaches could be the availability or estimation of genetic correlations between external and internal traits.
基于线性混合模型的贝叶斯观点,多项研究表明,有可能将给定评估系统之外进行的遗传评估所提供的估计育种值(EBV)和相关可靠性(REL)整合到该遗传评估中。此后,术语“内部”指的是这个给定的遗传评估系统,术语“外部”指的是在内部评估系统之外进行的所有其他遗传评估。贝叶斯方法通过基于外部信息的知识改变加性遗传效应先验分布的均值和(协)方差来整合外部信息(即外部EBV和相关REL)。贝叶斯方法在多变量设置中的扩展很有意义,因为在其他尺度、测量单位或性状定义上表达的,或与内部性状具有不同遗传力和遗传参数的外部信息,可以整合到多变量遗传评估中,而无需将外部信息转换为内部性状。因此,本研究的目的是使用针对目标性状的随机回归测定日模型,测试以305天为基础表达且与目标性状存在遗传相关性的外部EBV和相关REL,整合到多变量遗传评估中的情况。我们使用的方法是多变量贝叶斯方法。结果表明,外部信息的整合至少为与外部信息相关的动物带来了与包含所有可用表型信息的双变量评估一样准确的目标性状遗传评估。总之,多变量贝叶斯方法有潜力将与内部表型性状相关的外部信息,以及可能与不同随机回归相关的外部信息,整合到多变量遗传评估中。这允许对外部和内部性状使用不同的尺度、遗传力、方差分量、测量单位或性状定义。然而,实施多变量贝叶斯方法的一个可能问题可能是外部和内部性状之间遗传相关性的可用性或估计。