Rhodes Nathan R, Barde Amey, Randhir Kelvin, Li Like, Hahn David W, Mei Renwei, Klausner James F, AuYeung Nick
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA.
School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvalis, OR, 97331, USA.
ChemSusChem. 2015 Nov;8(22):3793-8. doi: 10.1002/cssc.201501023. Epub 2015 Oct 5.
Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps.
太阳能热化学储能在实现具有成本效益的聚光太阳能发电(CSP)方面具有巨大潜力。基于SrO/SrCO₃碳酸化循环的热化学储能系统能够储存和释放高温(≈1200°C)热量。研究了由氧化锆基烧结抑制剂支持的SrCO₃/SrO系统的能量密度,该系统在1150°C下进行了15个放热碳酸化循环,随后在1235°C下进行分解。由氧化钇稳定的氧化锆(YSZ)支持的含40 wt% SrO的样品在相同循环温度下经过15个循环后,在1450 MJ m⁻³表现出良好的储能稳定性。在经过45个循环的进一步测试后,在最后一个循环中观察到储能容量降至1260 MJ m⁻³。这种下降是由于碳酸化动力学减慢,通过延长碳酸化步骤可以获得能量密度的原始值。