Resch Christoph, Naik Hemal, Keitler Peter, Benkhardt Steven, Klinker Gudrun
IEEE Trans Vis Comput Graph. 2015 Nov;21(11):1211-20. doi: 10.1109/TVCG.2015.2459898.
In the Shader Lamps concept, a projector-camera system augments physical objects with projected virtual textures, provided that a precise intrinsic and extrinsic calibration of the system is available. Calibrating such systems has been an elaborate and lengthy task in the past and required a special calibration apparatus. Self-calibration methods in turn are able to estimate calibration parameters automatically with no effort. However they inherently lack global scale and are fairly sensitive to input data. We propose a new semi-automatic calibration approach for projector-camera systems that - unlike existing auto-calibration approaches - additionally recovers the necessary global scale by projecting on an arbitrary object of known geometry. To this end our method combines surface registration with bundle adjustment optimization on points reconstructed from structured light projections to refine a solution that is computed from the decomposition of the fundamental matrix. In simulations on virtual data and experiments with real data we demonstrate that our approach estimates the global scale robustly and is furthermore able to improve incorrectly guessed intrinsic and extrinsic calibration parameters thus outperforming comparable metric rectification algorithms.
在Shader Lamps概念中,只要系统具有精确的内参和外参校准,投影仪-相机系统就能用投影的虚拟纹理增强物理对象。过去,校准此类系统是一项复杂且耗时的任务,需要特殊的校准设备。自校准方法则能够自动轻松地估计校准参数。然而,它们本质上缺乏全局尺度,并且对输入数据相当敏感。我们提出了一种针对投影仪-相机系统的新型半自动校准方法,与现有的自动校准方法不同,该方法通过投影到已知几何形状的任意物体上来额外恢复必要的全局尺度。为此,我们的方法将表面配准与基于从结构化光投影重建的点的束调整优化相结合,以细化从基本矩阵分解计算出的解决方案。在虚拟数据模拟和真实数据实验中,我们证明了我们的方法能够稳健地估计全局尺度,并且还能够改进错误猜测的内参和外参校准参数,从而优于可比的度量校正算法。