Suppr超能文献

芽殖酵母中由Snf1相互作用蛋白Sip4控制的转录网络的趋异进化

Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts.

作者信息

Mehlgarten Constance, Krijger Jorrit-Jan, Lemnian Ioana, Gohr André, Kasper Lydia, Diesing Anne-Kathrin, Grosse Ivo, Breunig Karin D

机构信息

Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.

Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.

出版信息

PLoS One. 2015 Oct 6;10(10):e0139464. doi: 10.1371/journal.pone.0139464. eCollection 2015.

Abstract

Cellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK) functions as a central regulator of cellular energy homeostasis. The yeast AMPK ortholog SNF1 controls the transcriptional network that counteracts carbon starvation conditions by regulating a set of transcription factors. Among those Cat8 and Sip4 have overlapping DNA-binding specificity for so-called carbon source responsive elements and induce target genes upon SNF1 activation. To analyze the evolution of the Cat8-Sip4 controlled transcriptional network we have compared the response to carbon limitation of Saccharomyces cerevisiae to that of Kluyveromyces lactis. In high glucose, S. cerevisiae displays tumor cell-like aerobic fermentation and repression of respiration (Crabtree-positive) while K. lactis has a respiratory-fermentative life-style, respiration being regulated by oxygen availability (Crabtree-negative), which is typical for many yeasts and for differentiated higher cells. We demonstrate divergent evolution of the Cat8-Sip4 network and present evidence that a role of Sip4 in controlling anabolic metabolism has been lost in the Saccharomyces lineage. We find that in K. lactis, but not in S. cerevisiae, the Sip4 protein plays an essential role in C2 carbon assimilation including induction of the glyoxylate cycle and the carnitine shuttle genes. Induction of KlSIP4 gene expression by KlCat8 is essential under these growth conditions and a primary function of KlCat8. Both KlCat8 and KlSip4 are involved in the regulation of lactose metabolism in K. lactis. In chromatin-immunoprecipitation experiments we demonstrate binding of both, KlSip4 and KlCat8, to selected CSREs and provide evidence that KlSip4 counteracts KlCat8-mediated transcription activation by competing for binding to some but not all CSREs. The finding that the hierarchical relationship of these transcription factors differs between K. lactis and S. cerevisiae and that the sets of target genes have diverged contributes to explaining the phenotypic differences in metabolic life-style.

摘要

细胞对饥饿的反应起源古老,因为营养限制一直是对生命系统稳定性的常见挑战。因此,参与感知或转导有关有限代谢物信息的信号分子高度保守,而转录因子及其调控的基因则有所不同。在真核生物中,AMP激活的蛋白激酶(AMPK)作为细胞能量稳态的核心调节因子发挥作用。酵母AMPK直系同源物SNF1通过调节一组转录因子来控制对抗碳饥饿条件的转录网络。其中,Cat8和Sip4对所谓的碳源响应元件具有重叠的DNA结合特异性,并在SNF1激活后诱导靶基因。为了分析Cat8-Sip4控制的转录网络的进化,我们比较了酿酒酵母和乳酸克鲁维酵母对碳限制的反应。在高葡萄糖条件下,酿酒酵母表现出肿瘤细胞样的有氧发酵并抑制呼吸作用(克奈特氏阳性),而乳酸克鲁维酵母具有呼吸-发酵生活方式,呼吸作用受氧气可用性调节(克奈特氏阴性),这是许多酵母和分化的高等细胞的典型特征。我们证明了Cat8-Sip4网络的趋异进化,并提供证据表明Sip4在控制合成代谢代谢中的作用在酿酒酵母谱系中已经丧失。我们发现,在乳酸克鲁维酵母中,而不是在酿酒酵母中,Sip4蛋白在C2碳同化中起重要作用,包括诱导乙醛酸循环和肉碱穿梭基因。在这些生长条件下,KlCat8对KlSIP4基因表达的诱导是必不可少的,并且是KlCat8的主要功能。KlCat8和KlSip4都参与了乳酸克鲁维酵母中乳糖代谢的调节。在染色质免疫沉淀实验中,我们证明了KlSip4和KlCat8都与选定的CSRE结合,并提供证据表明KlSip4通过竞争结合一些但不是所有的CSRE来抵消KlCat8介导的转录激活。这些转录因子的层次关系在乳酸克鲁维酵母和酿酒酵母之间有所不同,并且靶基因集也有所不同,这一发现有助于解释代谢生活方式的表型差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9465/4634231/9b89fe1269a5/pone.0139464.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验