Wijsman Robin, Grootjans Willem, Troost Esther G, van der Heijden Erik H, Visser Eric P, de Geus-Oei Lioe-Fee, Bussink Johan
Departments of aRadiation Oncology bRadiology and Nuclear Medicine cPulmonary Diseases, Radboud University Medical Center, Nijmegen dDepartment of Radiology, Leiden University Medical Center, Leiden eBiomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, The Netherlands fInstitute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf gDepartment of Radiotherapy and Radiooncology, University Hospital Carl Gustav Carus at the Technische Universität Dresden hOncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.
Nucl Med Commun. 2016 Jan;37(1):66-73. doi: 10.1097/MNM.0000000000000409.
This radiotherapy planning study evaluated tumour delineation using both optimally respiratory gated and nongated fluorine-18 fluorodeoxyglucose-PET (F-FDG-PET).
For 22 non-small-cell lung tumours, both scans were used to create the nongated and gated (g) gross tumour volumes (GTVg) together with the accompanying clinical target volumes (CTV) and planning target volumes (PTV). The size of the target volumes (TV) was evaluated and the accompanying radiotherapy plans were created to study the radiation doses to the organs at risk (OAR).
The median volumes of GTVg, CTVg and PTVg were statistically significantly smaller compared with the corresponding nongated volumes, resulting in a median TV reduction of 0.5 cm (interquartile range 0.1-1.2), 1.5 cm (-0.2 to 7.0) and 2.3 cm (-0.5 to 11.3) for the GTVg, CTVg and PTVg, respectively. For the OAR, only the percentage of lung (GTV included) receiving at least 35 Gy was significantly smaller after gating, with a median difference in lung volume receiving at least 35 Gy of 5.7 cm (interquartile range -0.8 to 30.50).
Compared with nongated F-FDG-PET, the TVs obtained with optimally respiratory gated F-FDG-PET were significantly smaller, however, without a clinically relevant difference in radiation dose to the OAR.
本放射治疗计划研究评估了使用最佳呼吸门控和非门控氟-18氟脱氧葡萄糖正电子发射断层扫描(F-FDG-PET)进行肿瘤勾画的情况。
对于22例非小细胞肺癌肿瘤,利用这两种扫描来创建非门控和门控(g)大体肿瘤体积(GTVg)以及相应的临床靶体积(CTV)和计划靶体积(PTV)。评估靶体积(TV)的大小,并制定相应的放射治疗计划,以研究危及器官(OAR)的辐射剂量。
与相应的非门控体积相比,GTVg、CTVg和PTVg的中位数体积在统计学上显著更小,GTVg、CTVg和PTVg的TV中位数分别减少了0.5厘米(四分位间距0.1 - 1.2)、1.5厘米(-0.2至7.0)和2.3厘米(-0.5至11.3)。对于OAR,门控后仅接受至少35 Gy的肺(包括GTV)百分比显著更小,接受至少35 Gy的肺体积中位数差异为5.7厘米(四分位间距-0.8至30.50)。
与非门控F-FDG-PET相比,最佳呼吸门控F-FDG-PET获得的TV显著更小,然而,对OAR的辐射剂量在临床上无显著差异。