Leonidova Anna, Anstaett Philipp, Pierroz Vanessa, Mari Cristina, Spingler Bernhard, Ferrari Stefano, Gasser Gilles
Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Institute of Molecular Cancer Research, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Inorg Chem. 2015 Oct 19;54(20):9740-8. doi: 10.1021/acs.inorgchem.5b01332. Epub 2015 Oct 6.
Reactive oxygen species (ROS)-activated aminoferrocene-based anticancer prodrug candidates successfully take advantage of intrinsically high amounts of ROS in tumor tissues. Interestingly, the ROS-initiated activation of these prodrug candidates leads to formation of unstable aminoferrocene (Fc-NH2) derivatives, which decay to iron ions. The latter catalytically increases ROS concentration to a lethal level. In this work, we prepared light-controlled aminoferrocene prodrug candidates by derivatizing Fc-NH2 with an o-nitrophenyl and an o-nitrobiphenyl photolabile protecting group (PLPG), respectively, and by further conjugation to a mitochondria localization signal (MLS) peptide (Cys-D-Arg-Phe-Lys-NH2). The resulting bioconjugates were found to be more stable and less cytotoxic, in the dark, toward human promyelocytic leukemia cells (HL-60) compared to Fc-NH2. Upon light irradiation at 355 nm, both conjugates released Fc-NH2, albeit with very different photolysis quantum yields. The o-nitrobiphenyl photocage was in fact several orders of magnitude more efficient than the o-nitrophenyl photocage in releasing Fc-NH2. This difference was reflected by the light irradiation experiments on the HL-60 cell line, in which aminoferrocene conjugated with the o-nitrobiphenyl cage and the MLS displayed the highest phototoxicity index (2.5 ± 0.4) of all the compounds tested. The iron release assays confirmed the rise in iron ion concentrations upon light irradiation of both caged aminoferrocene derivatives. Together with the absence of phototoxicity on the nonmalignant hTERT-immortalized retinal pigment epithelial (hTERT RPE-1) cell line, these results indicate catalytic generation of ROS as possible mode of action.
活性氧(ROS)激活的基于氨基二茂铁的抗癌前药候选物成功利用了肿瘤组织中固有的大量ROS。有趣的是,这些前药候选物的ROS引发的激活导致形成不稳定的氨基二茂铁(Fc-NH2)衍生物,其分解为铁离子。后者催化将ROS浓度增加到致死水平。在这项工作中,我们通过分别用邻硝基苯基和邻硝基联苯光不稳定保护基团(PLPG)衍生化Fc-NH2,并进一步与线粒体定位信号(MLS)肽(Cys-D-Arg-Phe-Lys-NH2)缀合,制备了光控氨基二茂铁前药候选物。结果发现,与Fc-NH2相比,所得生物共轭物在黑暗中对人早幼粒细胞白血病细胞(HL-60)更稳定且细胞毒性更小。在355nm光照下,两种共轭物都释放出Fc-NH2,尽管光解量子产率非常不同。事实上,邻硝基联苯光笼在释放Fc-NH2方面比邻硝基苯基光笼效率高几个数量级。这种差异在HL-60细胞系的光照实验中得到体现,其中与邻硝基联苯笼和MLS缀合的氨基二茂铁在所有测试化合物中显示出最高的光毒性指数(2.5±0.4)。铁释放测定证实了光照两种笼状氨基二茂铁衍生物后铁离子浓度的升高。连同对非恶性hTERT永生化视网膜色素上皮(hTERT RPE-1)细胞系无光毒性,这些结果表明ROS的催化产生是可能的作用方式。