Lautenschläger Janin, Lautenschläger Christian, Tadic Vedrana, Süße Herbert, Ortmann Wolfgang, Denzler Joachim, Stallmach Andreas, Witte Otto W, Grosskreutz Julian
Hans Berger Department of Neurology, University Hospital Jena, Erlanger Allee 101, 07747 Jena, Germany.
Clinic for Internal Medicine IV, University Hospital Jena, Erlanger Allee 101, 07747 Jena, Germany.
Mitochondrion. 2015 Nov;25:49-59. doi: 10.1016/j.mito.2015.10.003. Epub 2015 Oct 9.
The function of intact organelles, whether mitochondria, Golgi apparatus or endoplasmic reticulum (ER), relies on their proper morphological organization. It is recognized that disturbances of organelle morphology are early events in disease manifestation, but reliable and quantitative detection of organelle morphology is difficult and time-consuming. Here we present a novel computer vision algorithm for the assessment of organelle morphology in whole cell 3D images. The algorithm allows the numerical and quantitative description of organelle structures, including total number and length of segments, cell and nucleus area/volume as well as novel texture parameters like lacunarity and fractal dimension. Applying the algorithm we performed a pilot study in cultured motor neurons from transgenic G93A hSOD1 mice, a model of human familial amyotrophic lateral sclerosis. In the presence of the mutated SOD1 and upon excitotoxic treatment with kainate we demonstrate a clear fragmentation of the mitochondrial network, with an increase in the number of mitochondrial segments and a reduction in the length of mitochondria. Histogram analyses show a reduced number of tubular mitochondria and an increased number of small mitochondrial segments. The computer vision algorithm for the evaluation of organelle morphology allows an objective assessment of disease-related organelle phenotypes with greatly reduced examiner bias and will aid the evaluation of novel therapeutic strategies on a cellular level.
完整细胞器的功能,无论是线粒体、高尔基体还是内质网(ER),都依赖于其适当的形态组织。人们认识到细胞器形态紊乱是疾病表现的早期事件,但对细胞器形态进行可靠且定量的检测既困难又耗时。在此,我们提出一种新颖的计算机视觉算法,用于评估全细胞三维图像中的细胞器形态。该算法能够对细胞器结构进行数值和定量描述,包括片段的总数和长度、细胞和细胞核的面积/体积,以及诸如空隙率和分形维数等新的纹理参数。应用该算法,我们在转基因G93A hSOD1小鼠(一种人类家族性肌萎缩侧索硬化症模型)的培养运动神经元中进行了一项初步研究。在存在突变型SOD1的情况下,以及在用红藻氨酸进行兴奋性毒性处理后,我们证明线粒体网络明显碎片化,线粒体片段数量增加,线粒体长度减少。直方图分析显示管状线粒体数量减少,小线粒体片段数量增加。用于评估细胞器形态的计算机视觉算法能够客观评估与疾病相关的细胞器表型,极大地减少了检查者偏差,并将有助于在细胞水平评估新的治疗策略。