Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
Mitochondrion. 2024 May;76:101882. doi: 10.1016/j.mito.2024.101882. Epub 2024 Apr 9.
Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.
线粒体是动态细胞器,可根据功能需求改变其形态特征。因此,线粒体形态是线粒体功能和细胞健康的重要指标。在显微镜图像中可靠地分割线粒体网络是进一步对其形态进行定量评估的关键初始步骤。然而,三维线粒体分割,特别是在具有复杂网络形态的细胞中,如高度极化的细胞中,仍然具有挑战性。为了提高超分辨率显微镜图像中 3D 线粒体分割的质量,我们采用了机器学习方法,使用 3D Trainable Weka,这是一个 ImageJ 插件。我们证明,与其他常用方法相比,我们的方法有效地分割了线粒体网络,在不同极化上皮细胞模型中,包括分化的人视网膜色素上皮 (RPE) 细胞,准确性得到了提高。此外,我们使用分割后的几种定量分析工具,揭示了在用巴弗洛霉素处理的 RPE 细胞中存在线粒体碎片化。