Hsiao Yu-Ting, Lee Wei-Po, Yang Wei, Müller Stefan, Flamm Christoph, Hofacker Ivo, Kügler Philipp
IEEE/ACM Trans Comput Biol Bioinform. 2016 Jan-Feb;13(1):64-75. doi: 10.1109/TCBB.2015.2465954. Epub 2015 Aug 20.
Modeling gene regulatory networks (GRNs) is essential for conceptualizing how genes are expressed and how they influence each other. Typically, a reverse engineering approach is employed; this strategy is effective in reproducing possible fitting models of GRNs. To use this strategy, however, two daunting tasks must be undertaken: one task is to optimize the accuracy of inferred network behaviors; and the other task is to designate valid biological topologies for target networks. Although existing studies have addressed these two tasks for years, few of the studies can satisfy both of the requirements simultaneously. To address these difficulties, we propose an integrative modeling framework that combines knowledge-based and data-driven input sources to construct biological topologies with their corresponding network behaviors. To validate the proposed approach, a real dataset collected from the cell cycle of the yeast S. cerevisiae is used. The results show that the proposed framework can successfully infer solutions that meet the requirements of both the network behaviors and biological structures. Therefore, the outcomes are exploitable for future in vivo experimental design.
基因调控网络(GRNs)建模对于理解基因如何表达以及它们如何相互影响至关重要。通常采用逆向工程方法;这种策略在重现GRNs的可能拟合模型方面很有效。然而,要使用这种策略,必须完成两项艰巨的任务:一项任务是优化推断网络行为的准确性;另一项任务是为目标网络指定有效的生物学拓扑结构。尽管现有研究多年来一直在处理这两项任务,但很少有研究能同时满足这两个要求。为了解决这些困难,我们提出了一个综合建模框架,该框架结合基于知识和数据驱动的输入源来构建具有相应网络行为的生物学拓扑结构。为了验证所提出的方法,使用了从酿酒酵母细胞周期收集的真实数据集。结果表明,所提出的框架能够成功推断出满足网络行为和生物学结构要求的解决方案。因此,这些结果可用于未来的体内实验设计。