Suppr超能文献

PEAK:在基因调控网络推理中整合经过整理的和有噪声的先验知识。

PEAK: Integrating Curated and Noisy Prior Knowledge in Gene Regulatory Network Inference.

作者信息

Altarawy Doaa, Eid Fatma-Elzahraa, Heath Lenwood S

机构信息

1 Department of Computer Science, Virginia Tech , Blacksburg, Virginia.

2 Department of Computer and Systems Engineering, Alexandria University , Alexandria, Egypt .

出版信息

J Comput Biol. 2017 Sep;24(9):863-873. doi: 10.1089/cmb.2016.0199. Epub 2017 Mar 15.

Abstract

With abundance of biological data, computational prediction of gene regulatory networks (GRNs) from gene expression data has become more feasible. Although incorporating other prior knowledge (PK), along with gene expression data, greatly improves prediction accuracy, the overall accuracy is still low. PK in GRN inference can be categorized into noisy and curated. In noisy PK, relations between genes do not necessarily correspond to regulatory relations and are thus considered inaccurate by inference algorithms such as transcription factor binding and protein-protein interactions. In contrast, curated PK is experimentally verified regulatory interactions in pathway databases. An issue in real data is that gene expression can poorly support the curated PK and thus most existing prediction algorithms cannot use these curated PK. Although several algorithms were proposed to incorporate noisy PK, none address curated PK with poor gene expression support. We present PEAK, a system to integrate both curated and noisy PK in GRN inference, especially with poor gene expression support. We introduce a novel method for GRN inference, CurInf, to effectively integrate curated PK, even when the gene expression data poorly support the PK. PEAK also uses the previously proposed method Modified Elastic Net to incorporate noisy PK, and we call it NoisInf. In our experiment, CurInf significantly incorporates curated PK, which was regarded as noise by previous methods. Using 100% curated PK, CurInf improves the area under precision-recall curve accuracy score over NoisInf by 27.3% in synthetic data, 86.5% in Escherichia coli data, and 31.1% in Saccharomyces cerevisiae data. Moreover, even when the noise in PK is 10 times more than true PK, PEAK performs better than inference without any PK. Better integration of curated PK helps biologists benefit from verified experimental data to predict more reliable GRN.

摘要

随着生物数据的丰富,从基因表达数据计算预测基因调控网络(GRN)变得更加可行。尽管将其他先验知识(PK)与基因表达数据相结合可显著提高预测准确性,但整体准确性仍然较低。GRN推理中的PK可分为噪声型和整理型。在噪声型PK中,基因之间的关系不一定对应于调控关系,因此被转录因子结合和蛋白质-蛋白质相互作用等推理算法认为是不准确的。相比之下,整理型PK是通路数据库中经过实验验证的调控相互作用。实际数据中的一个问题是基因表达对整理型PK的支持较差,因此大多数现有的预测算法无法使用这些整理型PK。尽管提出了几种算法来纳入噪声型PK,但没有一种算法能解决基因表达支持较差的整理型PK问题。我们提出了PEAK,这是一个在GRN推理中整合整理型和噪声型PK的系统,特别是在基因表达支持较差的情况下。我们引入了一种新的GRN推理方法CurInf,即使在基因表达数据对PK支持较差的情况下,也能有效地整合整理型PK。PEAK还使用了先前提出的改进弹性网络方法来纳入噪声型PK,我们将其称为NoisInf。在我们的实验中,CurInf显著纳入了整理型PK,而之前的方法将其视为噪声。在合成数据中,使用100%的整理型PK,CurInf在精确召回率曲线下面积准确率得分上比NoisInf提高了27.3%,在大肠杆菌数据中提高了86.5%,在酿酒酵母数据中提高了31.1%。此外,即使PK中的噪声比真实PK多10倍,PEAK的性能也优于没有任何PK的推理。更好地整合整理型PK有助于生物学家从经过验证的实验数据中受益,以预测更可靠的GRN。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验