Suppr超能文献

细菌利用柠檬酸盐或丙二酸盐生长的分子基础。

Molecular Basis for Bacterial Growth on Citrate or Malonate.

作者信息

Dimroth Peter

出版信息

EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.3.4.6.

Abstract

Environmental citrate or malonate is degraded by a variety of aerobic or anaerobic bacteria. For selected examples, the genes encoding the specific enzymes of the degradation pathway are described together with the encoded proteins and their catalytic mechanisms. Aerobic bacteria degrade citrate readily by the basic enzyme equipment of the cell if a specific transporter for citrate is available. Anaerobic degradation of citrate in Klebsiella pneumoniae requires the so-called substrate activation module to convert citrate into its thioester with the phosphoribosyl dephospho-CoA prosthetic group of citrate lyase. The citryl thioester is subsequently cleaved into oxaloacetate and the acetyl thioester, from which a new citryl thioester is formed as the turnover continues. The degradation of malonate likewise includes a substrate activation module with a phosphoribosyl dephospho-CoA prosthetic group. The machinery gets ready for turnover after forming the acetyl thioester with the prosthetic group. The acetyl residue is then exchanged by a malonyl residue, which is easily decarboxylated with the regeneration of the acetyl thioester. This equipment suffices for aerobic growth on malonate, since ATP is produced via the oxidation of acetate. Anaerobic growth on citrate or malonate, however, depends on additional enzymes of a so-called energy conservation module. This allows the conversion of decarboxylation energy into an electrochemical gradient of Na+ ions. In citrate-fermenting K. pneumoniae, the Na+ gradient is formed by the oxaloacetate decarboxylase and mainly used to drive the active transport of citrate into the cell. To use this energy source for this purpose is possible, since ATP is generated by substrate phosphorylation in the well-known sequence from pyruvate to acetate. In the malonate-fermenting bacterium Malonomonas rubra, however, no reactions for substrate level phosphorylation are available and the Na+ gradient formed in the malonate decarboxylation reaction must therefore be used as the driving force for ATP synthesis.

摘要

环境中的柠檬酸盐或丙二酸盐可被多种需氧或厌氧细菌降解。对于选定的示例,将描述降解途径特定酶的编码基因以及所编码的蛋白质及其催化机制。如果有柠檬酸盐的特定转运体,需氧细菌可通过细胞的基本酶装置轻松降解柠檬酸盐。肺炎克雷伯菌中柠檬酸盐的厌氧降解需要所谓的底物激活模块,将柠檬酸盐与柠檬酸裂解酶的磷酸核糖去磷酸辅酶A辅基转化为其硫酯。随后,柠檬酰硫酯裂解为草酰乙酸和乙酰硫酯,随着周转的继续,从中形成新的柠檬酰硫酯。丙二酸盐的降解同样包括一个带有磷酸核糖去磷酸辅酶A辅基的底物激活模块。该机制在与辅基形成乙酰硫酯后为周转做好准备。然后乙酰残基被丙二酰残基交换,丙二酰残基很容易脱羧并再生乙酰硫酯。该装置足以支持在丙二酸盐上的需氧生长,因为ATP是通过乙酸盐的氧化产生的。然而,在柠檬酸盐或丙二酸盐上的厌氧生长取决于所谓能量守恒模块的其他酶。这使得脱羧能量能够转化为Na+离子的电化学梯度。在发酵柠檬酸盐的肺炎克雷伯菌中,Na+梯度由草酰乙酸脱羧酶形成,主要用于驱动柠檬酸盐的主动转运进入细胞。由于ATP是通过从丙酮酸到乙酸盐的著名序列中的底物水平磷酸化产生的,因此有可能将这种能量源用于此目的。然而,在发酵丙二酸盐的细菌红丙二酸单胞菌中,没有底物水平磷酸化的反应,因此在丙二酸盐脱羧反应中形成的Na+梯度必须用作ATP合成的驱动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验