From the Houston Methodist DeBakey Heart and Vascular Center, Houston, TX (D.M., M.S.J., S.R.I., R.C.S., C.M.B., S.M.C., M.J.R., W.A.Z., S.H.L.); and Department of Bioengineering, Rice University, Houston, TX (P.C., J.G.-A.).
Circ Cardiovasc Imaging. 2015 Oct;8(10):e003626. doi: 10.1161/CIRCIMAGING.115.003626.
BACKGROUND: 3D stereolithographic printing can be used to convert high-resolution computed tomography images into life-size physical models. We sought to apply 3D printing technologies to develop patient-specific models of the anatomic and functional characteristics of severe aortic valve stenosis. METHODS AND RESULTS: Eight patient-specific models of severe aortic stenosis (6 tricuspid and 2 bicuspid) were created using dual-material fused 3D printing. Tissue types were identified and segmented from clinical computed tomography image data. A rigid material was used for printing calcific regions, and a rubber-like material was used for soft tissue structures of the outflow tract, aortic root, and noncalcified valve cusps. Each model was evaluated for its geometric valve orifice area, echocardiographic image quality, and aortic stenosis severity by Doppler and Gorlin methods under 7 different in vitro stroke volume conditions. Fused multimaterial 3D printed models replicated the focal calcific structures of aortic stenosis. Doppler-derived measures of peak and mean transvalvular gradient correlated well with reference standard pressure catheters across a range of flow conditions (r=0.988 and r=0.978 respectively, P<0.001). Aortic valve orifice area by Gorlin and Doppler methods correlated well (r=0.985, P<0.001). Calculated aortic valve area increased a small amount for both methods with increasing flow (P=0.002). CONCLUSIONS: By combing the technologies of high-spatial resolution computed tomography, computer-aided design software, and fused dual-material 3D printing, we demonstrate that patient-specific models can replicate both the anatomic and functional properties of severe degenerative aortic valve stenosis.
背景:3D 立体光刻技术可用于将高分辨率计算机断层扫描图像转换为实物大小的物理模型。我们试图应用 3D 打印技术来开发严重主动脉瓣狭窄的解剖和功能特征的患者特异性模型。
方法和结果:使用双材料融合 3D 打印技术创建了 8 个严重主动脉瓣狭窄(6 个三尖瓣和 2 个二尖瓣)的患者特异性模型。从临床计算机断层扫描图像数据中识别和分割组织类型。刚性材料用于打印钙化区域,橡胶状材料用于打印流出道、主动脉根部和非钙化瓣叶的软组织结构。根据不同的体外冲程体积条件,通过多普勒和 Gorlin 方法,对每个模型的几何瓣口面积、超声心动图图像质量和主动脉瓣狭窄严重程度进行了评估。融合多材料 3D 打印模型复制了主动脉瓣狭窄的局灶性钙化结构。峰值和平均跨瓣梯度的多普勒衍生测量值与参考标准压力导管在一系列流量条件下相关性良好(r=0.988 和 r=0.978,P<0.001)。Gorlin 和多普勒方法的主动脉瓣口面积相关性良好(r=0.985,P<0.001)。对于两种方法,随着流量的增加,计算出的主动脉瓣口面积都略有增加(P=0.002)。
结论:通过结合高空间分辨率计算机断层扫描、计算机辅助设计软件和融合双材料 3D 打印技术,我们证明了患者特异性模型可以复制严重退行性主动脉瓣狭窄的解剖和功能特性。
Circ Cardiovasc Imaging. 2015-10
J Am Soc Echocardiogr. 2005-12
Ann Biomed Eng. 2017-2
Am J Physiol Heart Circ Physiol. 2004-9
J Soc Cardiovasc Angiogr Interv. 2022-7-13
Rev Cardiovasc Med. 2023-2-14
Biomimetics (Basel). 2024-2-23
MedEdPublish (2016). 2017-6-6
Int J Bioprint. 2023-4-11