Reichle Lawrence J, Cook Rich, Yanca Catherine A, Sonntag Darrell B
a ORISE Participant, hosted by the U.S. Environmental Protection Agency , Office of Transportation and Air Quality , Ann Arbor , MI , USA.
b U.S. Environmental Protection Agency , Office of Transportation and Air Quality , Ann Arbor , MI , USA.
J Air Waste Manag Assoc. 2015 Oct;65(10):1185-93. doi: 10.1080/10962247.2015.1020118.
The composition of exhaust emissions from nonroad engines and equipment varies based on a number of parameters, including engine type, emission control technology, fuel composition, and operating conditions. Speciated emissions data which characterize the chemical composition of these emissions are needed to develop chemical speciation profiles used for air quality modeling and to develop air toxics inventories. In this paper, we present results of an extensive review and analysis of available exhaust speciation data for total organic gases (TOG) for spark ignition (SI) engines running on gasoline/ethanol blends now in widespread use, and compression ignition (CI) engines running on diesel fuel. We identified two data sets best suited for development of exhaust speciation profiles. Neither of these data sets have previously been published. We analyzed the resulting speciation profiles for differences in SI engine exhaust composition between 2-stroke and 4-stroke engines using E0 (0% ethanol) and E10 (10% ethanol) blends, and differences in CI engine exhaust composition among engines meeting different emission standards. Exhaust speciation profiles were also analyzed to compare differences in maximum incremental reactivity (MIR) values; this is a useful indicator for evaluating how organic gases may affect ozone formation for air quality modeling. Our analyses found significant differences in speciated emissions from 2-stroke and 4-stroke SI engines, and between engines running on E0 and E10 fuels. We found significant differences in profiles from pre-Tier 1 CI engines, engines meeting Tier 1 standards, and engines meeting Tier 2 standards. Although data for nonroad CI engines meeting tier 4 standards with control devices such as particulate filters and selective catalyst reduction (SCR) devices were not available, data from highway CI engines suggest these technologies will substantially change profiles for nonroad CI engines as well (EPA, 2014c).
The nonroad engine data sets analyzed in this study will substantially improve exhaust speciation profiles used to characterize organic gas emissions from nonroad engines. Since nonroad engines are major contributors to ambient air pollution, these profiles can considerably improve U.S. emission inventories for gaseous air toxics emitted from nonroad engines. The speciation profiles developed in this paper can be used to develop more accurate emission inputs to chemical transport models, leading to more accurate air quality modeling.
非道路发动机和设备的废气排放成分会因许多参数而有所不同,这些参数包括发动机类型、排放控制技术、燃料成分和运行条件。为了开发用于空气质量建模的化学形态分布以及编制空气有毒物质清单,需要有能够表征这些排放物化学成分的特定排放数据。在本文中,我们展示了对现有废气形态数据进行广泛审查和分析的结果,这些数据涉及目前广泛使用的以汽油/乙醇混合燃料运行的火花点火(SI)发动机以及以柴油运行的压缩点火(CI)发动机的总有机气体(TOG)排放。我们确定了两个最适合用于开发废气形态分布的数据集。这两个数据集此前均未发表。我们分析了由此产生的形态分布,以研究使用E0(0%乙醇)和E10(10%乙醇)混合燃料时二冲程和四冲程SI发动机废气成分的差异,以及符合不同排放标准的CI发动机废气成分的差异。还对废气形态分布进行了分析,以比较最大增量反应性(MIR)值的差异;这是评估有机气体如何影响空气质量建模中臭氧形成的一个有用指标。我们的分析发现,二冲程和四冲程SI发动机的特定排放以及使用E0和E10燃料的发动机之间存在显著差异。我们发现, Tier 1之前的CI发动机、符合Tier 1标准的发动机以及符合Tier 2标准的发动机的形态分布存在显著差异。尽管没有符合Tier 4标准且配备颗粒过滤器和选择性催化还原(SCR)装置等控制设备的非道路CI发动机的数据,但来自公路CI发动机的数据表明,这些技术也将极大地改变非道路CI发动机的形态分布(美国环境保护局,2014c)。
本研究中分析的非道路发动机数据集将极大地改进用于表征非道路发动机有机气体排放的废气形态分布。由于非道路发动机是环境空气污染的主要来源,这些分布能够显著改进美国非道路发动机排放的气态空气有毒物质清单。本文开发的形态分布可用于为化学传输模型开发更准确的排放输入,从而实现更准确的空气质量建模。