Suppr超能文献

硫醇与异羟肟酸作为组蛋白去乙酰化酶(HDAC)抑制中锌结合基团的比较:从头算量子力学/分子力学分子动力学研究

Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study.

作者信息

Gong Wenjing, Wu Ruibo, Zhang Yingkai

机构信息

Department of Chemistry, New York University, New York, New York, 10003.

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

出版信息

J Comput Chem. 2015 Nov 15;36(30):2228-35. doi: 10.1002/jcc.24203. Epub 2015 Oct 9.

Abstract

Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs.

摘要

锌依赖性组蛋白去乙酰化酶(HDACs)在转录抑制和基因沉默中起关键作用,是开发抗癌和其他多种疾病新疗法最具吸引力的靶点之一。两种HDAC抑制剂已被美国食品药品监督管理局(FDA)批准为抗癌药物:一种是SAHA,其异羟肟酸直接与锌结合;另一种是FK228,其活性形式可能使用硫醇作为锌结合基团。尽管进行了广泛研究,但硫醇和异羟肟酸如何与HDACs的锌活性位点结合仍不明确。在这项工作中,我们的计算方法以含伞形抽样的玻恩-奥本海默从头算量子力学/分子力学(QM/MM)分子动力学为核心,这使得能够以合理的精度对锌活性位点进行建模,同时适当地纳入蛋白质环境的动力学和效应。同时,在初始的分子力学平衡中采用了一种改进的短-长有效函数(SLEF2)来描述锌与其他原子之间的非键相互作用。我们的从头算QM/MM分子动力学模拟证实,异羟肟酸与HDAC8结合时呈中性,并发现硫醇在HDAC活性位点直接与锌结合时会去质子化。通过比较硫醇和异羟肟酸,我们的结果阐明了它们在HDAC活性位点结合环境的差异,并强调了连接子设计对于实现对IIa类HDACs更特异性结合的重要性。

相似文献

1
Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study.
J Comput Chem. 2015 Nov 15;36(30):2228-35. doi: 10.1002/jcc.24203. Epub 2015 Oct 9.
2
Zinc chelation with hydroxamate in histone deacetylases modulated by water access to the linker binding channel.
J Am Chem Soc. 2011 Apr 27;133(16):6110-3. doi: 10.1021/ja111104p. Epub 2011 Apr 1.
4
Diarylcyclopropane hydroxamic acid inhibitors of histone deacetylase 4 designed by combinatorial approach and QM/MM calculations.
J Mol Graph Model. 2018 Oct;85:97-110. doi: 10.1016/j.jmgm.2018.08.008. Epub 2018 Aug 16.
5
Computational exploration of zinc binding groups for HDAC inhibition.
J Org Chem. 2013 May 17;78(10):5051-5. doi: 10.1021/jo400406g. Epub 2013 Apr 29.
6
Thiol-based SAHA analogues as potent histone deacetylase inhibitors.
Bioorg Med Chem Lett. 2004 Jun 21;14(12):3313-7. doi: 10.1016/j.bmcl.2004.03.063.
8
The Development Process: from SAHA to Hydroxamate HDAC Inhibitors with Branched CAP Region and Linear Linker.
Chem Biodivers. 2020 Jan;17(1):e1900427. doi: 10.1002/cbdv.201900427. Epub 2019 Dec 23.
9
An efficient synthesis of SK-658 and its analogs as potent histone deacetylase inhibitors.
Bioorg Chem. 2015 Apr;59:145-50. doi: 10.1016/j.bioorg.2015.02.009. Epub 2015 Mar 7.
10
Identification of a potent non-hydroxamate histone deacetylase inhibitor by mechanism-based drug design.
Bioorg Med Chem Lett. 2005 Jan 17;15(2):331-5. doi: 10.1016/j.bmcl.2004.10.074.

引用本文的文献

1
The Impact of Fluorination on the Design of Histone Deacetylase Inhibitors.
Molecules. 2023 Feb 19;28(4):1973. doi: 10.3390/molecules28041973.
2
Phosphorus containing analogues of SAHA as inhibitors of HDACs.
J Enzyme Inhib Med Chem. 2022 Dec;37(1):1315-1319. doi: 10.1080/14756366.2022.2063281.
3
An in silico mechanistic insight into HDAC8 activation facilitates the discovery of new small-molecule activators.
Bioorg Med Chem. 2020 Aug 15;28(16):115607. doi: 10.1016/j.bmc.2020.115607. Epub 2020 Jun 30.
4
Metal Ion Modeling Using Classical Mechanics.
Chem Rev. 2017 Feb 8;117(3):1564-1686. doi: 10.1021/acs.chemrev.6b00440. Epub 2017 Jan 3.

本文引用的文献

1
Special Issue on Polarization.
J Chem Theory Comput. 2007 Nov;3(6):1877. doi: 10.1021/ct700252g.
3
Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems.
J Chem Theory Comput. 2010 Jun 8;6(6):1852-70. doi: 10.1021/ct900454q. Epub 2010 May 10.
4
Computational design of a time-dependent histone deacetylase 2 selective inhibitor.
ACS Chem Biol. 2015 Mar 20;10(3):687-92. doi: 10.1021/cb500767c. Epub 2015 Jan 2.
5
Inhibition and mechanism of HDAC8 revisited.
J Am Chem Soc. 2014 Aug 20;136(33):11636-43. doi: 10.1021/ja501548p. Epub 2014 Aug 7.
6
AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins.
J Chem Inf Model. 2014 Aug 25;54(8):2371-9. doi: 10.1021/ci500209e. Epub 2014 Jul 18.
7
How is acetylcholinesterase phosphonylated by soman? An ab initio QM/MM molecular dynamics study.
J Phys Chem A. 2014 Oct 2;118(39):9132-9. doi: 10.1021/jp502712d. Epub 2014 May 9.
9
Sirtuin Deacetylation Mechanism and Catalytic Role of the Dynamic Cofactor Binding Loop.
J Phys Chem Lett. 2013 Feb 7;4(3):491-495. doi: 10.1021/jz302015s.
10
DNA cytosine methylation: structural and thermodynamic characterization of the epigenetic marking mechanism.
Biochemistry. 2013 Apr 23;52(16):2828-38. doi: 10.1021/bi400163k. Epub 2013 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验