Suppr超能文献

一种用于从4D超声应变成像中识别正常和病变主动脉壁各向异性超弹性特性的有限元更新方法。

A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging.

作者信息

Wittek Andreas, Derwich Wojciech, Karatolios Konstantinos, Fritzen Claus Peter, Vogt Sebastian, Schmitz-Rixen Thomas, Blase Christopher

机构信息

Department of Biological Sciences, Goethe University Frankfurt am Main, Germany; Department of Mechanical Engineering, University Siegen, Germany.

Department of Vascular and Endovascular Surgery, Goethe University Frankfurt am Main, Germany.

出版信息

J Mech Behav Biomed Mater. 2016 May;58:122-138. doi: 10.1016/j.jmbbm.2015.09.022. Epub 2015 Sep 28.

Abstract

Computational analysis of the biomechanics of the vascular system aims at a better understanding of its physiology and pathophysiology and eventually at diagnostic clinical use. Because of great inter-individual variations, such computational models have to be patient-specific with regard to geometry, material properties and applied loads and boundary conditions. Full-field measurements of heterogeneous displacement or strain fields can be used to improve the reliability of parameter identification based on a reduced number of observed load cases as is usually given in an in vivo setting. Time resolved 3D ultrasound combined with speckle tracking (4D US) is an imaging technique that provides full field information of heterogeneous aortic wall strain distributions in vivo. In a numerical verification experiment, we have shown the feasibility of identifying nonlinear and orthotropic constitutive behaviour based on the observation of just two load cases, even though the load free geometry is unknown, if heterogeneous strain fields are available. Only clinically available 4D US measurements of wall motion and diastolic and systolic blood pressure are required as input for the inverse FE updating approach. Application of the developed inverse approach to 4D US data sets of three aortic wall segments from volunteers of different age and pathology resulted in the reproducible identification of three distinct and (patho-) physiologically reasonable constitutive behaviours. The use of patient-individual material properties in biomechanical modelling of AAAs is a step towards more personalized rupture risk assessment.

摘要

血管系统生物力学的计算分析旨在更好地理解其生理学和病理生理学,并最终应用于临床诊断。由于个体间差异很大,此类计算模型在几何形状、材料特性、施加的载荷和边界条件方面必须针对特定患者。基于体内通常给定的较少数量的观察载荷情况,异质位移或应变场的全场测量可用于提高参数识别的可靠性。时间分辨三维超声结合散斑追踪(四维超声)是一种成像技术,可在体内提供异质主动脉壁应变分布的全场信息。在数值验证实验中,我们已经表明,即使无载荷几何形状未知,但如果有非均匀应变场,仅基于两个载荷情况的观察结果就可以识别非线性和正交各向异性本构行为。仅需要临床上可用的壁运动四维超声测量以及舒张压和收缩压作为有限元逆更新方法的输入。将所开发的逆方法应用于来自不同年龄和病理状况志愿者的三个主动脉壁段的四维超声数据集,可重复识别出三种不同的、(病理)生理学上合理的本构行为。在腹主动脉瘤生物力学建模中使用患者个体材料特性是朝着更个性化破裂风险评估迈出的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验