David Geffen School of Medicine, University of California, Los Angeles, 855 Tiverton Dr., Los Angeles, CA, 90024, USA; Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
Comput Biol Med. 2024 Nov;182:109194. doi: 10.1016/j.compbiomed.2024.109194. Epub 2024 Sep 27.
The human aorta undergoes complex morphologic changes that mirror the evolution of disease. Finite element analysis (FEA) enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into FEA to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing that pathologic growth drives morphologic heterogeneity. FEA-derived trajectories in a shape-size geometric feature space, which plots the variance of the shape index versus the inverse square root of aortic surface area (δS vs. [Formula: see text] ), quantitatively demonstrate an increase in δS. This represents a deviation from physiologic shape changes and parallels the true geometric progression of aortic disease patients.
人体主动脉经历着与疾病演变相呼应的复杂形态变化。有限元分析(FEA)能够预测主动脉的病理状态,但缺乏对生物力学的理解阻碍了这一计算工具的适用性。我们将来自计算机断层血管造影(CTA)成像扫描的几何信息纳入 FEA 中,以预测四位主动脉疾病患者未来的几何轨迹。通过定义两次扫描之间的几何对应关系,患者特定的 FEA 模型可以重现两次时间点之间主动脉的变形,表明病理性生长会导致形态异质性。在形状-尺寸几何特征空间中的 FEA 衍生轨迹,绘制了形状指数的方差与主动脉表面积的倒数平方根的关系(δS 与 [公式:见正文]),定量地证明了 δS 的增加。这代表了对生理形状变化的偏离,与主动脉疾病患者的真实几何进展相吻合。