Suppr超能文献

基于蒙特卡洛方法的线圈强度校正的直肠内磁共振成像中的噪声补偿

Monte Carlo-based noise compensation in coil intensity corrected endorectal MRI.

作者信息

Lui Dorothy, Modhafar Amen, Haider Masoom A, Wong Alexander

机构信息

Department of Systems Design Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada.

Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Canada.

出版信息

BMC Med Imaging. 2015 Oct 12;15:43. doi: 10.1186/s12880-015-0081-0.

Abstract

BACKGROUND

Prostate cancer is one of the most common forms of cancer found in males making early diagnosis important. Magnetic resonance imaging (MRI) has been useful in visualizing and localizing tumor candidates and with the use of endorectal coils (ERC), the signal-to-noise ratio (SNR) can be improved. The coils introduce intensity inhomogeneities and the surface coil intensity correction built into MRI scanners is used to reduce these inhomogeneities. However, the correction typically performed at the MRI scanner level leads to noise amplification and noise level variations.

METHODS

In this study, we introduce a new Monte Carlo-based noise compensation approach for coil intensity corrected endorectal MRI which allows for effective noise compensation and preservation of details within the prostate. The approach accounts for the ERC SNR profile via a spatially-adaptive noise model for correcting non-stationary noise variations. Such a method is useful particularly for improving the image quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available.

RESULTS

SNR and contrast-to-noise ratio (CNR) analysis in patient experiments demonstrate an average improvement of 11.7 and 11.2 dB respectively over uncorrected endorectal MRI, and provides strong performance when compared to existing approaches.

DISCUSSION

Experimental results using both phantom and patient data showed that ACER provided strong performance in terms of SNR, CNR, edge preservation, subjective scoring when compared to a number of existing approaches.

CONCLUSIONS

A new noise compensation method was developed for the purpose of improving the quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level. We illustrate that promising noise compensation performance can be achieved for the proposed approach, which is particularly important for processing coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available.

摘要

背景

前列腺癌是男性中最常见的癌症形式之一,因此早期诊断至关重要。磁共振成像(MRI)有助于可视化和定位可能的肿瘤,并且通过使用直肠内线圈(ERC),可以提高信噪比(SNR)。这些线圈会引入强度不均匀性,而MRI扫描仪内置的表面线圈强度校正用于减少这些不均匀性。然而,通常在MRI扫描仪层面进行的校正会导致噪声放大和噪声水平变化。

方法

在本研究中,我们为经线圈强度校正的直肠内MRI引入了一种基于蒙特卡洛的新噪声补偿方法,该方法能够有效进行噪声补偿并保留前列腺内的细节。该方法通过空间自适应噪声模型考虑ERC的SNR分布,以校正非平稳噪声变化。这种方法特别适用于提高在MRI扫描仪层面进行的经线圈强度校正的直肠内MRI数据的图像质量,尤其是在原始原始数据不可用时。

结果

患者实验中的SNR和对比噪声比(CNR)分析表明,与未校正的直肠内MRI相比,平均分别提高了11.7 dB和11.2 dB,并且与现有方法相比表现出色。

讨论

使用体模和患者数据的实验结果表明,与许多现有方法相比,ACER在SNR、CNR、边缘保留和主观评分方面表现出色。

结论

为了提高在MRI扫描仪层面进行的经线圈强度校正的直肠内MRI数据的质量,开发了一种新的噪声补偿方法。我们证明,所提出的方法可以实现有前景的噪声补偿性能,这对于处理在MRI扫描仪层面进行的经线圈强度校正的直肠内MRI数据以及原始原始数据不可用时尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a359/4601140/abe83e4d3432/12880_2015_81_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验