Suppr超能文献

基于隐条件随机场的超高 b 值表观弥散加权成像重建。

Apparent Ultra-High b-Value Diffusion-Weighted Image Reconstruction via Hidden Conditional Random Fields.

出版信息

IEEE Trans Med Imaging. 2015 May;34(5):1111-24. doi: 10.1109/TMI.2014.2376781. Epub 2014 Dec 2.

Abstract

A promising, recently explored, alternative to ultra-high b-value diffusion weighted imaging (UHB-DWI) is apparent ultra-high b-value diffusion-weighted image reconstruction (AUHB-DWR), where a computational model is used to assist in the reconstruction of apparent DW images at ultra-high b -values. Firstly, we present a novel approach to AUHB-DWR that aims to improve image quality. We formulate the reconstruction of an apparent DW image as a hidden conditional random field (HCRF) in which tissue model diffusion parameters act as hidden states in this random field. The second contribution of this paper is a new generation of fully connected conditional random fields, called the hidden stochastically fully connected conditional random fields (HSFCRF) that allows for efficient inference with significantly reduced computational complexity via stochastic clique structures. The proposed AUHB-DWR algorithms, HCRF and HSFCRF, are evaluated quantitatively in nine different patient cases using Fisher's criteria, probability of error, and coefficient of variation metrics to validate its effectiveness for the purpose of improving intensity delineation between expert identified suspected cancerous and healthy tissue within the prostate gland. The proposed methods are also examined using a prostate phantom, where the apparent ultra-high b-value DW images reconstructed using the tested AUHB-DWR methods are compared with real captured UHB-DWI. The results illustrate that the proposed AUHB-DWR methods has improved reconstruction quality and improved intensity delineation compared with existing AUHB-DWR approaches.

摘要

一种有前途的、最近探索的替代超高 b 值扩散加权成像 (UHB-DWI) 的方法是表观超高 b 值扩散加权图像重建 (AUHB-DWR),其中使用计算模型来辅助在超高 b 值下重建表观 DW 图像。首先,我们提出了一种新的 AUHB-DWR 方法,旨在提高图像质量。我们将表观 DW 图像的重建表述为一个隐藏条件随机场 (HCRF),其中组织模型扩散参数作为该随机场中的隐藏状态。本文的第二个贡献是一种新的全连接条件随机场,称为隐藏随机全连接条件随机场 (HSFCRF),它通过随机团结构允许高效推理,并显著降低计算复杂度。所提出的 AUHB-DWR 算法,HCRF 和 HSFCRF,在九个不同的患者病例中使用 Fisher 准则、错误概率和变异系数度量进行了定量评估,以验证其在提高前列腺内专家识别的可疑癌组织和健康组织之间的强度描绘方面的有效性。还使用前列腺体模检查了所提出的方法,其中使用经过测试的 AUHB-DWR 方法重建的表观超高 b 值 DW 图像与实际捕获的 UHB-DWI 进行了比较。结果表明,与现有的 AUHB-DWR 方法相比,所提出的 AUHB-DWR 方法具有更好的重建质量和更好的强度描绘。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验