Leung M F, Chou I N
Department of Microbiology, Boston University School of Medicine, Massachusetts 02118.
Cell Biol Toxicol. 1989 Jan;5(1):51-66. doi: 10.1007/BF00141064.
Exposure of 3T3 cells to micromolar doses of 1-chloro-2,4-dinitrobenzene, a substrate for glutathione-S-transferase, resulted in a rapid depletion of total cellular glutathione accompanied by disassembly of microtubules as visualized by fluorescence microscopy. However, prolonged incubation resulted in cellular recovery from 1-chloro-2,4-dinitrobenzene insult as evidenced by a steady rise in total cellular glutathione accompanied by microtubule reassembly to their normal organization 5 hours after treatment. To evaluate the role of total cellular glutathione in modulating the 1-chloro-2,4-dinitrobenzene-induced cytoskeletal perturbation, we used 1-chloro-2,4-dinitrobenzene and/or buthionine sulfoximine, an effective irreversible inhibitor of glutathione synthesis, to manipulate cellular glutathione levels. Incubation of 3T3 cells with 2.5 microM 1-chloro-2,4-dinitrobenzene and 250 microM buthionine sulfoximine for 5 hours resulted in a complete depletion of total cellular glutathione accompanied by essentially complete loss of microtubules and marked alterations in the density and distribution pattern of microfilaments. Buthionine sulfoximine enhanced markedly the extent and duration of cellular glutathione depletion and the severity of microtubule disruption of 3T3 cells over the level achieved by 1-chloro-2,4-dinitrobenzene treatment alone. Furthermore, buthionine sulfoximine also prevented the restoration of cellular glutathione content and microtubule reassembly that normally were evident 5 hours after 1-chloro-2,4-dinitrobenzene treatment. Exposure of 3T3 cells to 50 microM 2-cyclohexene-1-one, which depletes free glutathione by conjugation, resulted in a complete depletion of total cellular glutathione content without altering the microtubule organization. These results suggest that the total glutathione content may be important for cellular recovery from 1-chloro-2,4-dinitrobenzene-mediated cytoskeletal injuries, and that microtubule disassembly observed in 1-chloro-2,4-dinitrobenzene-treated cells probably results from depletion of cellular glutathione coupled with binding to tubulin and/or other microtubule components.
将3T3细胞暴露于微摩尔剂量的1-氯-2,4-二硝基苯(一种谷胱甘肽-S-转移酶的底物)中,导致细胞内总谷胱甘肽迅速耗尽,同时通过荧光显微镜观察到微管解聚。然而,长时间孵育导致细胞从1-氯-2,4-二硝基苯损伤中恢复,这表现为处理后5小时细胞内总谷胱甘肽稳步上升,同时微管重新组装成正常结构。为了评估细胞内总谷胱甘肽在调节1-氯-2,4-二硝基苯诱导的细胞骨架扰动中的作用,我们使用1-氯-2,4-二硝基苯和/或丁硫氨酸亚砜胺(一种有效的谷胱甘肽合成不可逆抑制剂)来操纵细胞内谷胱甘肽水平。将3T3细胞与2.5微摩尔1-氯-2,4-二硝基苯和250微摩尔丁硫氨酸亚砜胺孵育5小时,导致细胞内总谷胱甘肽完全耗尽,同时微管基本完全丧失,微丝的密度和分布模式发生显著改变。与单独用1-氯-2,4-二硝基苯处理相比,丁硫氨酸亚砜胺显著增强了3T3细胞内谷胱甘肽消耗的程度和持续时间以及微管破坏的严重程度。此外,丁硫氨酸亚砜胺还阻止了细胞内谷胱甘肽含量的恢复和微管的重新组装,而在1-氯-2,4-二硝基苯处理后5小时通常会出现这种情况。将3T3细胞暴露于50微摩尔2-环己烯-1-酮中,该物质通过结合耗尽游离谷胱甘肽,导致细胞内总谷胱甘肽含量完全耗尽,但不改变微管结构。这些结果表明,总谷胱甘肽含量对于细胞从1-氯-2,4-二硝基苯介导的细胞骨架损伤中恢复可能很重要,并且在1-氯-2,4-二硝基苯处理的细胞中观察到的微管解聚可能是由于细胞内谷胱甘肽耗尽以及与微管蛋白和/或其他微管成分结合所致。