Wick Wolfgang, Platten Michael, Wick Antje, Hertenstein Anne, Radbruch Alexander, Bendszus Martin, Winkler Frank
Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.).
Neuro Oncol. 2016 Mar;18(3):315-28. doi: 10.1093/neuonc/nov180. Epub 2015 Oct 12.
Molecular targets for the pathological vasculature are the vascular endothelial growth factor (VEGF)/VEGF receptor axis, integrins, angiopoietins, and platelet-derived growth factor receptor (PDGFR), as well as several intracellular or downstream effectors like protein kinase C beta and mammalian target of rapamycin (mTOR). Besides hypoxic damage or tumor cell starvation, preclinical models imply vessel independent tumor regression and suggest differential effects of anti-angiogenic treatments on tumorous and nontumorous precursor cells or the immune system. Despite compelling preclinical data and positive data in other cancers, the outcomes of clinical trials with anti-angiogenic agents in gliomas by and large have been disappointing and include VEGF blockage with bevacizumab, integrin inhibition with cilengitide, VEGF receptor inhibition with sunitinib or cediranib, PDGFR inhibition with imatinib or dasatinib, protein kinase C inhibition with enzastaurin, and mTOR inhibition with sirolimus, everolimus, or temsirolimus. Importantly, there is a lack of real understanding for this negative data. Anti-angiogenic therapies have stimulated the development of standardized imaging assessment and the integration of functional MRI sequences into daily practice. Here, we delineate directions in the identification of molecularly or image-based defined subgroups, anti-angiogenic cotreatment for immunotherapy, and the potential of ongoing trials or modified targets to change the game.
病理性脉管系统的分子靶点包括血管内皮生长因子(VEGF)/VEGF受体轴、整合素、血管生成素和血小板衍生生长因子受体(PDGFR),以及一些细胞内或下游效应分子,如蛋白激酶Cβ和雷帕霉素靶蛋白(mTOR)。除了缺氧损伤或肿瘤细胞饥饿外,临床前模型提示存在不依赖血管的肿瘤消退,并表明抗血管生成治疗对肿瘤和非肿瘤前体细胞或免疫系统有不同影响。尽管临床前数据令人信服,且在其他癌症中也有阳性数据,但总体而言,抗血管生成药物治疗神经胶质瘤的临床试验结果令人失望,这些药物包括用贝伐单抗阻断VEGF、用西仑吉肽抑制整合素、用舒尼替尼或西地尼布抑制VEGF受体、用伊马替尼或达沙替尼抑制PDGFR、用恩杂他滨抑制蛋白激酶C以及用西罗莫司、依维莫司或替西罗莫司抑制mTOR。重要的是,目前对这些阴性数据缺乏真正的理解。抗血管生成疗法推动了标准化影像评估的发展,并促使功能磁共振成像序列融入日常实践。在此,我们阐述了在识别基于分子或影像定义的亚组、免疫治疗的抗血管生成联合治疗以及正在进行的试验或改良靶点改变现状的潜力方面的方向。