Drollette Brian D, Hoelzer Kathrin, Warner Nathaniel R, Darrah Thomas H, Karatum Osman, O'Connor Megan P, Nelson Robert K, Fernandez Loretta A, Reddy Christopher M, Vengosh Avner, Jackson Robert B, Elsner Martin, Plata Desiree L
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511;
Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Oberschleissheim, Germany;
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13184-9. doi: 10.1073/pnas.1511474112. Epub 2015 Oct 12.
Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.
在通过大规模水力压裂法(HVHF)进行天然气开采的过程中,会使用数百种有机化学品。然而,尚不清楚注入深层页岩层的这些化学品是否会到达浅层地下水含水层,并影响当地水质,无论是来自那些深层HVHF注入点,还是来自地表或浅部地下。在此,我们报告了宾夕法尼亚州东北部覆盖马塞勒斯页岩的私人住宅井浅层地下水样本中可检测到的有机化合物水平。对64个地下水样本中可吹扫和可萃取有机化合物的分析显示,挥发性有机化合物含量处于痕量水平,远低于美国环境保护局的最大污染物水平,汽油范围(0 - 8 ppb)和柴油范围有机化合物(DRO;0 - 157 ppb)的含量也较低。一项化合物特异性分析显示存在邻苯二甲酸二(2 - 乙基己基)酯,这是一种已公开的HVHF添加剂,在代表性的原生水样和现场空白样中明显不存在。将这些分析与(i)深层盐水地下水的无机化学指纹图谱、(ii)特征性惰性气体同位素以及(iii)活跃的页岩气开采井与存在公开的环境健康与安全违规行为的井之间的空间关系相结合,我们区分了与天然存在的盐水地下水相关的化学特征和与来自地表的其他人为途径(如意外泄漏或溢出)相关的化学特征。数据支持DRO通过压裂液化学品从地表意外释放进入地下水的传输机制,而非这些流体从下伏页岩层的地下流动。