Suppr超能文献

从神经元的脉冲序列测量随机突触输入时的树突转换——建模与仿真

Dendritic transformations on random synaptic inputs as measured from a neuron's spike train--modeling and simulation.

作者信息

Kohn A F

出版信息

IEEE Trans Biomed Eng. 1989 Jan;36(1):44-54. doi: 10.1109/10.16448.

Abstract

Extracellular spike trains recorded from central nervous system neurons reflect the random activations from a multitude of presynaptic cells making contacts mainly on the extensive dendritic trees. The dendritic potential variations are propagated towards the trigger zone where action potentials are generated. In this paper, two dendritic propagation modes are modeled: passive and quasi-active. Synaptic bombardments are modeled as being applied apically, somatically, or distributed over the dendritic tree. The resulting simulated neuronal spike trains are analyzed by point process techniques. Dendritic inputs resulted in a tendency for random bursting, interspike interval histograms with a long tail and coefficients of variation larger than one. The autocorrelation histograms reflected dynamics of the dendritic tree and they were able to discriminate between a passive or a quasi-active propagation mode and between dendritic and somatic synaptic inputs.

摘要

从中枢神经系统神经元记录的细胞外尖峰序列反映了来自众多主要与广泛的树突树形成突触联系的突触前细胞的随机激活。树突电位变化向产生动作电位的触发区传播。在本文中,对两种树突传播模式进行了建模:被动模式和准主动模式。突触轰击被建模为从树突顶端、胞体或分布在整个树突树上施加。通过点过程技术对由此产生的模拟神经元尖峰序列进行分析。树突输入导致随机爆发的趋势,峰间间隔直方图具有长尾且变异系数大于1。自相关直方图反映了树突树的动态,并且能够区分被动或准主动传播模式以及树突和胞体突触输入。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验