Hutchinson J, Keating J P, Mezzadri F
School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032106. doi: 10.1103/PhysRevE.92.032106. Epub 2015 Sep 4.
We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups U(N),O(N), and Sp(2N). In particular we calculate critical exponents s,ν, and z, corresponding to the energy gap, correlation length, and dynamic exponent, respectively. We also compute the ground state correlators 〈σ_{i}^{x}σ_{i+n}^{x}〉{g},〈σ{i}^{y}σ_{i+n}^{y}〉{g}, and 〈∏{i=1}^{n}σ_{i}^{z}〉_{g}, all of which display quasi-long-range order with a critical exponent dependent upon system parameters. Our approach establishes universality of the exponents for the class of systems in question.
我们计算了一类一般的量子自旋链的临界性质,这类自旋链在费米子算符中是二次的,并且在与经典紧致群U(N)、O(N)和Sp(2N)相关的某些对称约束下可以精确求解。特别地,我们分别计算了对应于能隙、关联长度和动力学指数的临界指数s、ν和z。我们还计算了基态关联函数〈σ_{i}^{x}σ_{i + n}^{x}〉{g}、〈σ{i}^{y}σ_{i + n}^{y}〉{g}和〈∏{i = 1}^{n}σ_{i}^{z}〉_{g},所有这些关联函数都显示出准长程序,其临界指数取决于系统参数。我们的方法确立了所讨论的这类系统中指数的普适性。