Amundsen David Skålid, Trømborg Jørgen Kjoshagen, Thøgersen Kjetil, Katzav Eytan, Malthe-Sørenssen Anders, Scheibert Julien
Astrophysics Group, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom.
Department of Physics, University of Oslo, Sem Sælands vei 24, NO-0316, Oslo, Norway.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032406. doi: 10.1103/PhysRevE.92.032406. Epub 2015 Sep 21.
The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.
干摩擦界面的破裂是通过前沿的传播来实现的,这些前沿会破坏界面处的接触。最近的实验表明,这些破裂前沿的速度范围从与外部加载速率成正比的准静态速度到大于剪切波速度的速度。系统参数影响前沿速度的方式仍然知之甚少。在这里,我们研究了在具有各种摩擦定律的扩展摩擦界面的一维(1D)弹簧 - 块模型中的稳态破裂传播。对于经典的阿蒙顿 - 库仑摩擦定律,我们推导了稳态破裂速度作为破裂前界面剪切应力函数的封闭形式表达式。然后,我们考虑界面的附加剪切刚度,并表明界面越软,破裂前沿越慢。我们为此效应提供了一个近似的封闭形式表达式。最后,我们表明在块体的相对运动上添加体积粘性会加速稳态破裂前沿,并且我们给出了此效应的近似表达式。我们证明一维结果在二维中定性有效。我们的结果深入了解了摩擦界面的各种关键参数对其破裂动力学的定性作用。它们将有助于更好地理解许多已证明弹簧 - 块模型适用的系统,从摩擦到颗粒物质和地震动力学。