Sevilla-Escoboza R, Gutiérrez R, Huerta-Cuellar G, Boccaletti S, Gómez-Gardeñes J, Arenas A, Buldú J M
Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de Leon, Paseos de la Montaña, Lagos de Moreno, Jalisco 47460, Mexico.
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032804. doi: 10.1103/PhysRevE.92.032804. Epub 2015 Sep 9.
Synchronization processes in populations of identical networked oscillators are the focus of intense studies in physical, biological, technological, and social systems. Here we analyze the stability of the synchronization of a network of oscillators coupled through different variables. Under the assumption of an equal topology of connections for all variables, the master stability function formalism allows assessing and quantifying the stability properties of the synchronization manifold when the coupling is transferred from one variable to another. We report on the existence of an optimal coupling transference that maximizes the stability of the synchronous state in a network of Rössler-like oscillators. Finally, we design an experimental implementation (using nonlinear electronic circuits) which grounds the robustness of the theoretical predictions against parameter mismatches, as well as against intrinsic noise of the system.
相同网络振荡器群体中的同步过程是物理、生物、技术和社会系统中深入研究的焦点。在此,我们分析了通过不同变量耦合的振荡器网络同步的稳定性。在所有变量连接拓扑相等的假设下,主稳定性函数形式主义允许在耦合从一个变量转移到另一个变量时评估和量化同步流形的稳定性特性。我们报告了存在一种最优耦合转移,它能使类罗斯勒振荡器网络中同步状态的稳定性最大化。最后,我们设计了一个实验实现(使用非线性电子电路),这为理论预测针对参数失配以及系统固有噪声的鲁棒性提供了依据。