Skardal P S, Sevilla-Escoboza R, Vera-Ávila V P, Buldú J M
Department of Mathematics, Trinity College, Hartford, Connecticut 06106, USA.
Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de Leon, Paseos de la Montaña, Lagos de Moreno, Jalisco 47460, Mexico.
Chaos. 2017 Jan;27(1):013111. doi: 10.1063/1.4974029.
We investigate the existence of an optimal interplay between the natural frequencies of a group of chaotic oscillators and the topological properties of the network they are embedded in. We identify the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest possible coupling strength. Specifically, we show by means of numerical and experimental results that it is possible to define a synchrony alignment function J(ω,L) linking the natural frequencies ω of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian matrix L, the latter accounting for the specific organization of the network of interactions between oscillators. We use the classical Rössler system to show that the synchrony alignment function obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry out a series of experiments with nonlinear electronic circuits to show the robustness of the theoretical predictions despite the intrinsic noise and parameter mismatch of the electronic components.
我们研究了一组混沌振荡器的固有频率与它们所嵌入网络的拓扑性质之间是否存在最优相互作用。我们确定了以最有效方式(即尽可能低的耦合强度)实现相位同步的条件。具体而言,我们通过数值和实验结果表明,可以定义一个同步对齐函数J(ω,L),它将一组非相同相位相干混沌振荡器的固有频率ω与拉普拉斯矩阵L的拓扑结构联系起来,拉普拉斯矩阵L描述了振荡器之间相互作用网络的特定组织形式。我们使用经典的罗斯勒系统来表明,为相位振荡器获得的同步对齐函数可以扩展到相位相干混沌系统。最后,我们用非线性电子电路进行了一系列实验,以表明尽管电子元件存在固有噪声和参数失配,理论预测仍然具有稳健性。