Suppr超能文献

非线性模式分解:一种抗噪声的自适应分解方法。

Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

作者信息

Iatsenko Dmytro, McClintock Peter V E, Stefanovska Aneta

机构信息

Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032916. doi: 10.1103/PhysRevE.92.032916. Epub 2015 Sep 29.

Abstract

The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

摘要

复杂系统发出的信号通常由不同振荡的混合组成,为了进行可靠的分析,这些振荡应彼此分离,并与不可避免的噪声背景分离。在这里,我们引入一种自适应分解工具——非线性模式分解(NMD),它可以将给定信号分解为一组对任何波形都具有物理意义的振荡,同时去除噪声。NMD基于时频分析技术的强大组合——这些技术连同其参数的自适应选择,使其具有极强的抗噪声能力——以及用于识别相互依赖振荡并区分确定性活动和随机活动的替代数据测试。我们说明了NMD在模拟信号和真实信号中的应用,并证明了它相对于其他方法(如(总体)经验模式分解、卡尔胡宁-勒夫展开和独立成分分析)在定性和定量方面的优越性。我们指出,NMD可能适用于并有助于许多不同的研究领域,如地球物理学、金融和生命科学。运行NMD所需的Matlab代码可免费下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验