Raven John A, Beardall John
Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK†, and School of Plant Biology, University of Western Australia, M084, 35 Stirling Highway, Crawley, WA 6009, Australia
School of Biological Sciences, Monash University, VIC 3800, Australia.
J Exp Bot. 2016 Jan;67(1):1-13. doi: 10.1093/jxb/erv451. Epub 2015 Oct 14.
It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3(-). The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3(-) use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3(-) active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3(-) can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3(-) pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3(-). Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation.
在进行光合作用的组织中,很难区分无机碳的流入和流出;本文探讨了已知的情况以及知识上的空白。不可逆脱羧酶会产生二氧化碳,而二氧化碳是作为羧化酶和脱羧酶的酶的底物/产物。一些不可逆羧化酶使用二氧化碳;另一些则使用碳酸氢根离子(HCO₃⁻)。在二氧化碳的下坡、非耗能移动过程中,通过脂质双分子层的渗透与通过二氧化碳选择性膜蛋白的移动相比,其相对作用尚不清楚。被动渗透解释了大多数二氧化碳的进入,包括具有C₃生理生化特性的陆生和水生生物、陆生C₄植物以及所有景天酸代谢(CAM)植物,并且也是二氧化碳浓缩机制(CCM)功能中一些碳酸氢根离子利用机制的一部分,不过在某些情况下还需要进一步的研究来验证该机制。然而,有一些证据表明藻类的质膜存在主动二氧化碳流入。质膜上的碳酸氢根离子主动流入是所有蓝细菌和一些藻类CCM的基础。碳酸氢根离子也可以进入一些藻类叶绿体,这可能是CCM的一部分。CCM导致细胞内高浓度的二氧化碳和碳酸氢根离子池,从而导致包括二氧化碳以及偶尔的碳酸氢根离子的泄漏。蓝细菌和微藻CCM的泄漏量高达进入CCM的总无机碳的一半,但有时更多;在大多数环境中,陆生C₄植物的泄漏量较低。对于其他具有CCM的生物的泄漏情况了解甚少,不过鉴于对泄漏情况研究得更充分的生物来看,可以确定泄漏是会发生的,并且会增加净碳同化的能量成本。