Suppr超能文献

用于设计具有高太阳能电池电压和增强光电流的基于苯并噻二唑-咔唑的共轭聚合物的D-π-A-π-A策略

D-π-A-π-A Strategy to Design Benzothiadiazole-carbazole-based Conjugated Polymer with High Solar Cell Voltage and Enhanced Photocurrent.

作者信息

Zhou Manxi, Wang Min, Zhu Lei, Yang Zhenqing, Jiang Chao, Cao Dapeng, Li Qifang

机构信息

State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

出版信息

Macromol Rapid Commun. 2015 Dec;36(24):2156-61. doi: 10.1002/marc.201500466. Epub 2015 Oct 15.

Abstract

The theoretical calculations are used to find that D-π-A-π-A style conjugated polymer PC-TBTBT is more efficient for solar cells application than the D-π-A analog PC-TBT because the D-π-A-π-A structure has a narrower band gap and higher molar absorption coefficient and redshift spectrum. Motivated by the theoretical prediction, 5,6-bis(octyloxy)-2,1,3-benzothiadiazole and 2,7-carbazole are adopted to synthesize the D-π-A-π-A style PC-TBTBT (M(w) = 31.1 kDa) and D-π-A analog PC-TBT (M(w) = 87.5 kDa) by Suzuki coupling reaction. Experimental results confirm that D-π-A-π-A PC-TBTBT-based solar cell shows a power conversion efficiency (PCE) of 4.74% with high V(OC) of 0.99 V and enhanced J(SC) of 9.70 mA cm(-2). The PCE and J(SC) achieve improvements of 17% and 26%, respectively, compared to the D-π-A PC-TBT-based solar cell.

摘要

理论计算表明,D-π-A-π-A型共轭聚合物PC-TBTBT在太阳能电池应用中比D-π-A类似物PC-TBT更高效,因为D-π-A-π-A结构具有更窄的带隙、更高的摩尔吸收系数和红移光谱。受理论预测的启发,采用5,6-双(辛氧基)-2,1,3-苯并噻二唑和2,7-咔唑通过铃木偶联反应合成了D-π-A-π-A型PC-TBTBT(M(w)=31.1 kDa)和D-π-A类似物PC-TBT(M(w)=87.5 kDa)。实验结果证实,基于D-π-A-π-A PC-TBTBT的太阳能电池的功率转换效率(PCE)为4.74%,开路电压(V(OC))高达0.99 V,短路电流密度(J(SC))提高到9.70 mA cm(-2)。与基于D-π-A PC-TBT的太阳能电池相比,PCE和J(SC)分别提高了17%和26%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验