Ablowitz Mark J, Ma Yi-Ping
Opt Lett. 2015 Oct 15;40(20):4635-8. doi: 10.1364/OL.40.004635.
The propagation of linear and nonlinear edge modes in bounded photonic honeycomb lattices formed by an array of rapidly varying helical waveguides is studied. These edge modes are found to exhibit strong transmission (reflection) around sharp corners when the dispersion relation is topologically nontrivial (trivial). An asymptotic theory is developed that establishes the presence (absence) of typical edge states, including, in particular, armchair and zigzag edge states in the topologically nontrivial (trivial) case. In the presence of topological protection, nonlinear edge solitons can persist over very long distances.
研究了由快速变化的螺旋波导阵列形成的有界光子蜂窝晶格中线性和非线性边缘模式的传播。当色散关系在拓扑上非平凡(平凡)时,发现这些边缘模式在尖角处表现出强透射(反射)。发展了一种渐近理论,该理论确定了典型边缘态的存在(不存在),特别是在拓扑非平凡(平凡)情况下的扶手椅状和锯齿状边缘态。在存在拓扑保护的情况下,非线性边缘孤子可以在很长距离上持续存在。