Sarracanie Mathieu, LaPierre Cristen D, Salameh Najat, Waddington David E J, Witzel Thomas, Rosen Matthew S
MGH/A.A. Martinos Center for Biomedical Imaging, 149 13th St, Suite 2301, Charlestown MA 02129, USA.
Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138, USA.
Sci Rep. 2015 Oct 15;5:15177. doi: 10.1038/srep15177.
Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm(3) imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.
磁共振成像(MRI)在以高空间和时间分辨率无创可视化解剖结构和功能方面具有无与伦比的能力。然而,为了克服感应检测弱极化核自旋固有的低灵敏度问题,绝大多数临床MRI扫描仪采用产生非常高磁场的超导磁体。这些强大的磁体通常为1.5 - 3特斯拉(T),体积庞大,对基础设施有非常严格的要求,这使得在许多环境中无法运行。MRI扫描仪的购买、安装和维护成本高昂,购买价格接近每特斯拉(T)磁场100万美元。我们在此展示一种在超低磁场下实现高性能人体MRI的极其简单的非低温方法,即现代欠采样策略与使用稳态自由进动技术的全聚焦动态自旋控制相结合。在6.5毫特斯拉(比临床MRI扫描仪低450倍以上)的磁场强度下,我们使用一个简单的开放式电磁体在活体人脑中展示了(2.5×3.5×8.5)立方毫米的成像分辨率,并在6分钟内完成了全脑的三维图像采集。我们认为,这些实际的超低磁场MRI应用(<10毫特斯拉)将补充传统MRI,提供临床相关图像,并为价格实惠(<50,000美元)且坚固耐用的便携式设备设定新标准。