Suppr超能文献

利用拉曼光谱和化学计量工具对涂抹奶酪进行分析。

Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.

作者信息

Oliveira Kamila de Sá, Callegaro Layce de Souza, Stephani Rodrigo, Almeida Mariana Ramos, de Oliveira Luiz Fernando Cappa

机构信息

Núcleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil.

Tate & Lyle Gemacom Tech, 36092-050 Juiz de Fora, MG, Brazil.

出版信息

Food Chem. 2016 Mar 1;194:441-6. doi: 10.1016/j.foodchem.2015.08.039. Epub 2015 Aug 12.

Abstract

In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods.

摘要

在这项工作中,采用傅里叶变换拉曼光谱法对涂抹奶酪样品进行评估。运用偏最小二乘判别分析来识别含有淀粉的涂抹奶酪样品。为建立模型,使用了两种类型的样品:商业样品和本地企业生产的样品。采用监督分类方法偏最小二乘判别分析将样品分类为掺假或不含淀粉的样品。使用偏最小二乘法进行多元回归以定量涂抹奶酪中的淀粉。该模型获得的检测限为0.34%(w/w),定量限为1.14%(w/w)。通过确定置信区间来评估模型的可靠性,置信区间是使用自助重采样技术计算得出的。结果表明,分类模型可用于补充经典分析并作为筛选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验