Stavrou Elissaios, Riad Manaa M, Zaug Joseph M, Kuo I-Feng W, Pagoria Philip F, Kalkan Bora, Crowhurst Jonathan C, Armstrong Michael R
Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550, USA.
Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA.
J Chem Phys. 2015 Oct 14;143(14):144506. doi: 10.1063/1.4932683.
Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C4H4N6O5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. We find very good agreement between the experimental and theoretically derived EOS.
最近对2,6 - 二氨基 - 3,5 - 二硝基吡嗪 - 1 - 氧化物(C4H4N6O5,劳伦斯利弗莫尔分子编号105,LLM - 105)的理论研究报告了未反应的高压状态方程,其中包括在8至50吉帕之间的几个结构相变,而一项已发表的实验研究报告了高达6吉帕压力下的状态方程(EOS)数据,未观察到相变。在此,我们报告了基于同步加速器的X射线衍射研究结果,以及LLM - 105在高达20吉帕压力下的常温等压等温原子分子动力学模拟结果。我们发现常压相在高达20吉帕时保持稳定;没有压力诱导相变的迹象。我们确实发现从大约13吉帕开始b轴压缩性显著降低,并将这种硬化归因于一个临界长度,此时层间距离变得与单个层内的分子间距离相似。通过对测量的X射线衍射图谱进行精修确定了常温等温状态方程。使用各种EOS模型对压力 - 体积数据进行拟合,以得到具有相应压力导数的体积模量。我们发现实验得出的EOS与理论得出的EOS之间非常吻合。