Brown Matthew A, Bossa Guilherme Volpe, May Sylvio
Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich , CH-8093 Zurich, Switzerland.
Department of Physics, North Dakota State University P.O. Box 6050, Fargo, North Dakota 58108-6050, United States.
Langmuir. 2015 Oct 27;31(42):11477-83. doi: 10.1021/acs.langmuir.5b02389. Epub 2015 Oct 16.
In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.
在对双电层最常用的现象学描述之一中,带电固体表面与可移动离子的扩散区域被一个薄的电荷耗尽的斯特恩层隔开。斯特恩层起到电容器的作用,通过增加表面电势的大小并限制最大反离子浓度来改进经典的古伊-查普曼模型。我们表明,通过在静电库仑势中加入非静电水化排斥力,扩散双电层会自然出现非常类似斯特恩层的性质。反离子与表面之间的静电吸引和水化排斥的相互作用导致形成一个与表面保持良好分离的扩散反离子层。此外,离子之间的水化排斥限制并控制了最大离子浓度,拓宽了扩散双电层的宽度。我们的平均场模型用静电势和水化势来表示,在物理上是一致的,在概念上与经典的古伊-查普曼模型相似。它允许纳入离子特异性,考虑带电表面的水化性质,并预测斯特恩层性质,我们根据水化反离子的有效大小对其进行分析。