State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
Biosens Bioelectron. 2016 Mar 15;77:557-64. doi: 10.1016/j.bios.2015.10.010. Epub 2015 Oct 8.
This work developed a CdS/MoS2 heterojunction-based photoelectrochemical biosensor for sensitive detection of DNA under the enhanced chemiluminescence excitation of luminol catalyzed by hemin-DNA complex. The CdS/MoS2 photocathode was prepared by the stepwise assembly of MoS2 and CdS quantum dots (QDs) on indium tin oxide (ITO), and achieved about 280% increasing of photocurrent compared to pure CdS QDs electrode due to the formation of heterostructure. High photoconversion efficiency in the photoelectrochemical system was identified to be the rapid spatial charge separation of electron-hole pairs by the extension of electron transport time and electron lifetime. In the presence of target DNA, the catalytic hairpin assembly was triggered, and simultaneously the dual hemin-labeled DNA probe was introduced to capture DNA/CdS/MoS2 modified ITO electrode. Thus the chemiluminescence emission of luminol was enhanced via hemin-induced mimetic catalysis, leading to the physical light-free photoelectrochemical strategy. Under optimized conditions, the resulting photoelectrode was proportional to the logarithm of target DNA concentration in the range from 1 fM to 100 pM with a detection limit of 0.39 fM. Moreover, the cascade amplification biosensor demonstrated high selectivity, desirable stability and good reproducibility, showing great prospect in molecular diagnosis and bioanalysis.
这项工作开发了一种基于 CdS/MoS2 异质结的光电流型电化学生物传感器,用于在辣根过氧化物酶-DNA 复合物催化的鲁米诺化学发光增强的情况下,灵敏检测 DNA。CdS/MoS2 光阴极通过 MoS2 和 CdS 量子点(QDs)在氧化铟锡(ITO)上的分步组装制备,与纯 CdS QDs 电极相比,由于形成异质结,光电流增加了约 280%。光电化学体系中具有较高的光电转换效率,这是由于电子空穴对的快速空间电荷分离,延长了电子输运时间和电子寿命。在存在靶 DNA 的情况下,引发催化发夹组装,同时引入双辣根过氧化物酶标记的 DNA 探针来捕获 DNA/CdS/MoS2 修饰的 ITO 电极。因此,通过辣根过氧化物酶诱导的模拟催化增强了鲁米诺的化学发光发射,从而实现了无物理光的光电化学策略。在优化条件下,所得光电极的对数与靶 DNA 浓度在 1 fM 至 100 pM 范围内呈线性关系,检测限为 0.39 fM。此外,级联放大生物传感器表现出高选择性、良好的稳定性和良好的重现性,在分子诊断和生物分析中具有广阔的应用前景。