Suppr超能文献

基于扩展相位图模型线性化版本的具有固有B1误差校正的噪声鲁棒空间正则化髓鞘水分数映射。

Noise robust spatially regularized myelin water fraction mapping with the intrinsic B1-error correction based on the linearized version of the extended phase graph model.

作者信息

Kumar Dushyant, Siemonsen Susanne, Heesen Christoph, Fiehler Jens, Sedlacik Jan

机构信息

Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

J Magn Reson Imaging. 2016 Apr;43(4):800-17. doi: 10.1002/jmri.25078. Epub 2015 Oct 19.

Abstract

PURPOSE

To improve the quantification accuracy of transverse relaxometry by accounting for B1 -error, after minimizing slice profile imperfections.

MATERIALS AND METHODS

The slice profile of refocusing pulses was optimized by setting refocusing slice thicknesses three times that of the excitation pulse. The first step of data processing combined the L-curve approach with the linearized version of the extended phase graph model to jointly estimate the temporal regularization constant map and the flip angle error (FAE)-map. The second step improved the noise robustness of the reconstruction by imposing a spatial smoothness constraint on T2 -distributions. The proposed method (spatial-regularization-with-FAE-correction) was evaluated against methods without FAE-correction (conventional-regularization-without-FAE-correction, spatial-regularization-without-FAE-correction) and conventional-regularization-with-FAE-correction using relevant statistics (simulated data: mean square myelin reconstruction error [MSMRE] and averaged-symmetric-Kullbeck-Leibler score [SKL] between returned distributions and ground truths; experimental data: median of mean square error [MMSE] of fitting across entire data-set and coefficient of variation [COV] in white-matter [WM] regions of interest [ROIs]).

RESULTS

In simulation, our method resulted in reduced MSMRE (at signal-to-noise ratio [SNR] = 200: MSMRESpatial-regularization-without-FAEC  = 0.057; MSMRESpatial-regularization-with-FAEC  = 0.0107) and reduced SKL scores (at SNR = 200: SKLSpatial-regularization-without-FAEC  = 0.061; SKLSpatial-regularization-with-FAEC  = 0.0143). In human volunteers, our method yielded a reduced MSE of fitting (MMSESpatial-regularization-without-FAEC  = (2.26 ± 0.60) × 10(-3) ; MMSESpatial-regularization-with-FAEC  = (1.57 ± 0.44) × 10(-4) )and also resulted in reduced COV (COVSpatial-regularization-without-FAEC  = 0.08-0.19; COVSpatial-regularization-with-FAEC  = 0.09-0.12). In a water-phantom, a good correlation between the absolute value of measured B1 -map and FAE-map was found (regression analysis: slope = 1.04; R(2)  = 0.66).

CONCLUSION

The proposed method resulted in more accurate and noise robust myelin water fraction maps with improved depiction of subcortical WM structures.

摘要

目的

在将切片轮廓缺陷最小化后,通过考虑B1误差来提高横向弛豫测量的量化精度。

材料与方法

通过将重聚焦切片厚度设置为激发脉冲厚度的三倍来优化重聚焦脉冲的切片轮廓。数据处理的第一步将L曲线方法与扩展相位图模型的线性化版本相结合,以联合估计时间正则化常数图和翻转角误差(FAE)图。第二步通过对T2分布施加空间平滑约束来提高重建的噪声鲁棒性。将所提出的方法(带FAE校正的空间正则化)与未进行FAE校正的方法(不带FAE校正的传统正则化、不带FAE校正的空间正则化)以及带FAE校正的传统正则化方法进行比较,使用相关统计量(模拟数据:返回分布与真实值之间的均方髓鞘重建误差[MSMRE]和平均对称Kullback-Leibler分数[SKL];实验数据:整个数据集拟合的均方误差[MMSE]中位数和感兴趣白质[WM]区域的变异系数[COV])进行评估。

结果

在模拟中,我们的方法使MSMRE降低(在信噪比[SNR]=200时:不带FAE校正的空间正则化MSMRE = 0.057;带FAE校正的空间正则化MSMRE = 0.0107),SKL分数降低(在SNR = 200时:不带FAE校正的空间正则化SKL = 0.061;带FAE校正的空间正则化SKL = 0.0143)。在人类志愿者中,我们的方法使拟合的MSE降低(不带FAE校正的空间正则化MMSE =(2.26±0.60)×10(-3);带FAE校正的空间正则化MMSE =(1.57±0.44)×10(-4)),并且还使COV降低(不带FAE校正的空间正则化COV = 0.08 - 0.19;带FAE校正的空间正则化COV = 0.09 - 0.12)。在水模中,发现测量的B1图的绝对值与FAE图之间具有良好的相关性(回归分析:斜率 = 1.04;R(2)=0.66)。

结论

所提出的方法产生了更准确且对噪声鲁棒的髓鞘水分数图,对皮质下WM结构的描绘得到了改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验