Suppr超能文献

利用联合稀疏约束进行快速多分量分析的磁共振指纹成像技术。

Fast multi-component analysis using a joint sparsity constraint for MR fingerprinting.

机构信息

Department of Quantitative Imaging, Technical University Delft, Delft, the Netherlands.

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany.

出版信息

Magn Reson Med. 2020 Feb;83(2):521-534. doi: 10.1002/mrm.27947. Epub 2019 Aug 16.

Abstract

PURPOSE

To develop an efficient algorithm for multi-component analysis of magnetic resonance fingerprinting (MRF) data without making a priori assumptions about the exact number of tissues or their relaxation properties.

METHODS

Different tissues or components within a voxel are potentially separable in MRF because of their distinct signal evolutions. The observed signal evolution in each voxel can be described as a linear combination of the signals for each component with a non-negative weight. An assumption that only a small number of components are present in the measured field of view is usually imposed in the interpretation of multi-component data. In this work, a joint sparsity constraint is introduced to utilize this additional prior knowledge in the multi-component analysis of MRF data. A new algorithm combining joint sparsity and non-negativity constraints is proposed and compared to state-of-the-art multi-component MRF approaches in simulations and brain MRF scans of 11 healthy volunteers.

RESULTS

Simulations and in vivo measurements show reduced noise in the estimated tissue fraction maps compared to previously proposed methods. Applying the proposed algorithm to the brain data resulted in 4 or 5 components, which could be attributed to different brain structures, consistent with previous multi-component MRF publications.

CONCLUSIONS

The proposed algorithm is faster than previously proposed methods for multi-component MRF and the simulations suggest improved accuracy and precision of the estimated weights. The results are easier to interpret compared to voxel-wise methods, which combined with the improved speed is an important step toward clinical evaluation of multi-component MRF.

摘要

目的

开发一种高效的磁共振指纹成像(MRF)多分量分析算法,无需对组织的确切数量及其弛豫特性做出先验假设。

方法

由于不同组织或成分在体素内具有不同的信号演化,因此在 MRF 中可以潜在地将它们分离。每个体素中观察到的信号演化可以用每个成分的信号与非负权重的线性组合来描述。在多分量数据的解释中,通常会施加一个假设,即在测量的视场内只存在少数几个分量。在这项工作中,引入了联合稀疏性约束,以在 MRF 数据的多分量分析中利用这种额外的先验知识。提出了一种结合联合稀疏性和非负约束的新算法,并在模拟和 11 名健康志愿者的脑 MRF 扫描中与最先进的多分量 MRF 方法进行了比较。

结果

模拟和体内测量结果表明,与以前提出的方法相比,估计的组织分数图中的噪声减少。将所提出的算法应用于脑数据,得到了 4 或 5 个分量,这可以归因于不同的脑结构,与以前的多分量 MRF 文献一致。

结论

与以前提出的多分量 MRF 方法相比,所提出的算法速度更快,模拟结果表明估计权重的准确性和精度有所提高。与基于体素的方法相比,结果更容易解释,结合速度的提高,这是多分量 MRF 临床评估的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315a/6899479/cc5750eb6442/MRM-83-521-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验