Colacurcio Daniel J, Zyskind Jacob W, Jordan-Sciutto Kelly L, Espinoza Cagla Akay
Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Levy Building, Room 323, Philadelphia, PA 19104, USA.
Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Levy Building, Room 323, Philadelphia, PA 19104, USA.
Neurosci Lett. 2015 Nov 16;609:182-8. doi: 10.1016/j.neulet.2015.10.031. Epub 2015 Oct 22.
MDMx/MDM4 is a negative regulator of the p53 tumor suppressor protein and is necessary for survival in dividing cells. MDMx is also expressed in postmitotic neurons, with prosurvival roles that are independent of its extensively described roles in carcinogenesis. We and others have shown a role for MDMx loss in neuronal death in vitro and in vivo in several neurodegenerative diseases. Further, we have recently shown that MDMx is targeted for proteolytic degradation by calcium-dependent proteases, calpains, in neurons in vitro, and that MDMx overexpression provided partial neuroprotection in a model of HIV-associated neurodegeneration. Here, we assessed whether amyloid β (Aβ)-induced MDMx degradation occurred in Alzheimer's Disease (AD) models. Our data shows an age-dependent reduction in MDMx levels in cholinergic neurons within the cortex of adult mice expressing the swedish mutant of the amyloid precursor protein, APP in the Tg2576 murine model of AD. In vitro, Aβ treatment of primary cortical neurons led to the caspase-dependent MDMx degradation. Our findings suggest that MDMx degradation associated with neuronal death occurs via caspase activation in neurons, and that the progressive loss of MDMx protein represents a potential mechanism of Aβ-induced neuronal death during disease progression in AD.
MDMx/MDM4是p53肿瘤抑制蛋白的负调节因子,是分裂细胞存活所必需的。MDMx也在有丝分裂后的神经元中表达,具有促存活作用,且与其在致癌作用中被广泛描述的作用无关。我们和其他人已经证明,在几种神经退行性疾病中,MDMx缺失在体外和体内的神经元死亡中起作用。此外,我们最近发现,在体外培养的神经元中,MDMx会被钙依赖性蛋白酶(钙蛋白酶)靶向进行蛋白水解降解,并且在HIV相关神经退行性变模型中,MDMx过表达可提供部分神经保护作用。在此,我们评估了淀粉样β蛋白(Aβ)诱导的MDMx降解是否发生在阿尔茨海默病(AD)模型中。我们的数据显示,在AD的Tg2576小鼠模型中,表达淀粉样前体蛋白瑞典突变体APP的成年小鼠大脑皮质内胆碱能神经元中,MDMx水平随年龄增长而降低。在体外,用Aβ处理原代皮质神经元会导致caspase依赖性的MDMx降解。我们的研究结果表明,与神经元死亡相关的MDMx降解是通过神经元中的caspase激活发生的,并且MDMx蛋白的逐渐丧失代表了AD疾病进展过程中Aβ诱导神经元死亡的一种潜在机制。