McCracken John
Department of Chemistry, Michigan State University, East Lansing, Michigan, USA.
Methods Enzymol. 2015;563:285-309. doi: 10.1016/bs.mie.2015.06.038. Epub 2015 Jul 21.
Aromatic amino acid hydroxylases are members of a larger group of enzymes that use a mononuclear nonheme Fe center to catalyze a variety of thermodynamically challenging reactions in which O2 is used in the oxidative transformation of substrates. The hydroxylase enzymes are catalytically active in the ferrous oxidation state and are high-spin. To render the catalytic site EPR-active, we have used nitric oxide (NO) as a surrogate for substrate O2 to form an S=3/2 paramagnetic center. While the continuous-wave (cw)-EPR spectra of NO-enzyme adducts are rather generic, they provide electron spin echo envelope modulation (ESEEM) data that are rich with structural information derived from ligand hyperfine couplings. This chapter will focus on (2)H-ESEEM spectroscopy, an approach that we have taken for assigning these spectra and harvesting the unique information on Fe(II) coordination chemistry that they provide. While these spectroscopic measurements are routine, an emphasis will be placed on the analysis of cw-EPR and (2)H-ESEEM data using an unconstrained nonlinear optimization approach. These analysis methods are based on simple custom "scripts" that run in the MATLAB environment and that use EasySpin, a public-domain EPR simulation package, as their calculation engine. The examples provided here use a strategy that can be adapted for the treatment of most EPR measurements.
芳香族氨基酸羟化酶是一类较大的酶家族成员,这些酶利用单核非血红素铁中心催化各种热力学上具有挑战性的反应,其中氧气用于底物的氧化转化。羟化酶在亚铁氧化态下具有催化活性,且为高自旋状态。为使催化位点具有电子顺磁共振(EPR)活性,我们使用一氧化氮(NO)作为底物氧气的替代物,以形成一个S = 3/2的顺磁中心。虽然NO - 酶加合物的连续波(cw)-EPR光谱较为一般,但它们提供了丰富的电子自旋回波包络调制(ESEEM)数据,这些数据包含源自配体超精细耦合的结构信息。本章将重点介绍(2)H - ESEEM光谱学,这是我们用于解析这些光谱并获取它们所提供的关于Fe(II)配位化学独特信息的一种方法。虽然这些光谱测量是常规操作,但将重点介绍使用无约束非线性优化方法对cw - EPR和(2)H - ESEEM数据进行分析。这些分析方法基于在MATLAB环境中运行的简单自定义“脚本”,并使用公共领域的EPR模拟软件包EasySpin作为计算引擎。此处提供的示例使用的策略可适用于大多数EPR测量的处理。