Kovalev A A, Kotlyar V V
J Opt Soc Am A Opt Image Sci Vis. 2015 Oct 1;32(10):1805-10. doi: 10.1364/JOSAA.32.001805.
We have formulated and proven the following theorem: the superposition of an arbitrary number of arbitrarily off-axis, identical nonparaxial optical vortex beams of arbitrary radially symmetric shape, integer topological charge n, and arbitrary real weight coefficients has the normalized orbital angular momentum (OAM) equal to that of individual constituent identical beams. This theorem enables generating vortex laser beams with different (not necessarily radially symmetric) intensity profiles but identical OAM. Superpositions of Bessel, Hankel-Bessel, Bessel-Gaussian, and Laguerre-Gaussian beams with the same OAM are discussed.
任意数量、任意离轴、形状为任意径向对称、整数拓扑电荷数为n且实权重系数任意的相同非傍轴光学涡旋光束的叠加,其归一化轨道角动量(OAM)等于各组成的相同光束的轨道角动量。该定理能够产生具有不同(不一定是径向对称)强度分布但相同OAM的涡旋激光束。文中还讨论了具有相同OAM的贝塞尔光束、汉克尔 - 贝塞尔光束、贝塞尔 - 高斯光束和拉盖尔 - 高斯光束的叠加情况。