Suppr超能文献

太赫兹圆形艾里涡旋光束。

Terahertz circular Airy vortex beams.

机构信息

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.

出版信息

Sci Rep. 2017 Jun 20;7(1):3891. doi: 10.1038/s41598-017-04373-6.

Abstract

Vortex beams have received considerable research interests both in optical and millimeter-wave domain since its potential to be utilized in the wireless communications and novel imaging systems. Many well-known optical beams have been demonstrated to carry orbital angular momentum (OAM), such as Laguerre-Gaussian beams and high-order Bessel beams. Recently, the radially symmetric Airy beams that exhibit an abruptly autofocusing feature are also demonstrated to be capable of carrying OAM in the optical domain. However, due to the lack of efficient devices to manipulate terahertz (THz) beams, it could be a challenge to demonstrate the radially symmetric Airy beams in the THz domain. Here we demonstrate the THz circular Airy vortex beams (CAVBs) with a 0.3-THz continuous wave through 3D printing technology. Assisted by the rapidly 3D-printed phase plates, individual OAM states with topological charge l ranging from l = 0 to l = 3 and a multiplexed OAM state are successfully imposed into the radially symmetric Airy beams. We both numerically and experimentally investigate the propagation dynamics of the generated THz CAVBs, and the simulations agree well with the observations.

摘要

涡旋光束因其在无线通信和新型成像系统中的潜在应用而受到光和毫米波领域的广泛关注。许多著名的光学光束已经被证明具有轨道角动量(OAM),例如拉盖尔-高斯光束和高阶贝塞尔光束。最近,具有突然自聚焦特性的径向对称艾里光束也被证明能够在光学领域携带 OAM。然而,由于缺乏有效操纵太赫兹(THz)光束的器件,在 THz 域中演示径向对称艾里光束可能是一个挑战。在这里,我们通过 3D 打印技术展示了具有 0.3-THz 连续波的太赫兹圆艾里涡旋光束(CAVB)。借助快速 3D 打印的相位板,成功将拓扑电荷 l 从 l=0 到 l=3 的单个 OAM 态和复用 OAM 态施加到径向对称的艾里光束上。我们对产生的太赫兹 CAVB 的传播动力学进行了数值和实验研究,模拟结果与观测结果吻合良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58e/5478637/cb88eaa23127/41598_2017_4373_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验