Sarkar Mitradeep, Bryche Jean-François, Moreau Julien, Besbes Mondher, Barbillon Grégory, Bartenlian Bernard, Canva Michael
Opt Express. 2015 Oct 19;23(21):27376-90. doi: 10.1364/OE.23.027376.
Metal nanoparticle arrays have proved useful for different applications due to their ability to enhance electromagnetic fields within a few tens of nanometers. This field enhancement results from the excitation of various plasmonic modes at certain resonance frequencies. In this article, we have studied an array of metallic nanocylinders placed on a thin metallic film. A simple analytical model is proposed to explain the existence of the different types of modes that can be excited in such a structure. Owing to the cylinder array, the structure can support localized surface plasmon (LSP) modes. The LSP mode couples to the propagating surface plasmon (PSP) mode of the thin film to give rise to the hybrid lattice plasmon (HLP) mode and anti-crossing phenomenon. Due to the periodicity of the array, the Bragg modes (BM) are also excited in the structure. We have calculated analytically the resonance frequencies of the BM, LSP and the corresponding HLP, and have verified the calculations by rigorous numerical methods. Experimental results obtained in the Kretschmann configuration also validate the proposed analytical model. The dependency of the resonance frequencies of these modes on the structural parameters such as cylinder diameter, height and the periodicity of the array is shown. Such a detailed study can offer insights on the physical phenomenon that governs the excitation of various plasmonic modes in the system. It is also useful to optimize the structure as per required for the different applications, where such types of structures are used.
由于金属纳米粒子阵列能够在几十纳米的范围内增强电磁场,已被证明在不同应用中很有用。这种场增强是由在特定共振频率下激发各种等离子体模式所导致的。在本文中,我们研究了放置在薄金属膜上的金属纳米圆柱阵列。提出了一个简单的分析模型来解释在这种结构中可以激发的不同类型模式的存在。由于圆柱阵列,该结构可以支持局域表面等离子体(LSP)模式。LSP模式与薄膜的传播表面等离子体(PSP)模式耦合,产生混合晶格等离子体(HLP)模式和反交叉现象。由于阵列的周期性,布拉格模式(BM)也在该结构中被激发。我们已经通过解析计算了BM、LSP以及相应HLP的共振频率,并通过严格的数值方法验证了计算结果。在Kretschmann配置中获得的实验结果也验证了所提出的分析模型。展示了这些模式的共振频率对结构参数(如圆柱直径、高度和阵列周期性)的依赖性。这样的详细研究可以为控制系统中各种等离子体模式激发的物理现象提供见解。对于根据不同应用需求优化此类结构的使用也是有用的。